The Unz Review - Mobile
A Collection of Interesting, Important, and Controversial Perspectives Largely Excluded from the American Mainstream Media
 JayMan ArchiveBlogview
Regression to the Mean
Email This Page to Someone

 Remember My Information



=>
Search Text Case Sensitive  Exact Words  Include Comments

It seems few understand regression to the mean and how and why it works.

Most people (and by most people, I mean most scholars – i.e., the people who should know better) have a vague understanding that it has something to do with IQ. They seem to have the impression it means that the children of smart parents will be less smart. Even more so when those parents come from a population with a low mean IQ.

And they seem to think this phenomenon goes on forever, such that grandchildren and great-grandchildren continue this march to mediocrity.

Well, a lot of this is confused to plain old wrong.

Let’s start with what regression to the mean is. Above is an illustration of a bell curve. A set of parents that lie out on the curve away from the mean will indeed tend to have children that are closer to the average. Hence, if a set of parents are +2 standard deviations for a trait, their children will be typically some degree closer to the mean.

The first thing to clear up is that regression to the mean operates in both directions. Just as parents +2σ will have children some degree less far off to the right on the curve, parents –2σ will have children some degree less far off to the left. That is, children of parents who are below average for a trait regress up.

To clear up some additional confusion, let’s look at what causes regression to the mean. The root of the phenomenon goes back to behavioral genetics, or more broadly heritability. Human traits have several components that contribute to trait variance. They are:

A: Additive heredity
D: Non-additive heredity (D from “dominance”)
C: Shared environment (C from “common environment”)
E: “Unshared” or “unique” environment.

As we’ve seen before, we know that A is typically 50-60%, D 10-20%, C is 0%, and E the remaining 20-30%.

The key fact is that for the transmission of a trait from parent to child, only A and C carry over to the next generation. But, as we know, C is 0; so that only leaves A. The rest, including non-additive heredity (which is basically fortuitous combinations of alleles) and whatever remaining “non-genetic” factors that constitute E (and all the things that comprise that, see Environmental Hereditarianism) are essentially luck. And since we can’t expect lightning to strike twice (as improper as that metaphor is), regression to the mean happens because luck goes away.

This is governed by the breeder’s equation.

R = h2 S.

R is the response to selection, S is the selection differential, and h2 is the narrow-sense heritability. This is the workhorse equation for quantitative genetics. The selective differential S, is the difference between the population mean and the mean of the parental population (some subset of the total population).

This equation can be used in different ways depending on whether we’re talking about whole populations or individual pairs of parents (though fundamentally for the same reason).

Let’s start with individuals. If two parents (let’s say White Americans) are +2σ for a trait, let’s say IQ, or 130, and we give the additive heritability of IQ to be about 0.6, we can expect their children to collectively have an average IQ of

0.6 • +2 = +1.2σ

…or 118. Now, this was assuming that their families had a mean IQ of 100. If their families had a different mean IQ, lets say 120 (+1.333σ), the breeder’s equation would give

0.6 • (2 – 1.333)σ = +0.4σ

…or a mean IQ of 126 for the children. (That’s because it’s +0.4σ plus the family mean IQ of +1.333σ.)

What’s better, here’s another illustration. Let’s say the parents’ families have a mean IQ of 120, but the parents themselves have IQs of 110. Given the breeder’s equation,

0.6 • (+0.6667 – 1.333)σ = –0.4σ

…for a mean IQ of 114 for their children (family mean IQ of +1.333σ minus 0.4σ). In other words, even though the parents (with IQs of 110) are above the mean of the population, because their families are well above average, their children regress up.

It’s important to make clear that the breeder’s equation, and hence regression to mean, works the same way for any quantitative trait, not just IQ. This includes political orientation, height, body weight, personality, etc. All you need to know are the values to fit the variables in the equation.

For populations, the equation works similarly. Hence, if a group of people with a mean IQ of 130 (who come from population with a mean IQ of 100) go off somewhere and have children, the next generation will have a mean IQ of 118. Now here’s the part that gives a lot of people trouble: the children of the children of this group, the third generation, will also have a mean IQ of 118. Why? Because the initial event changed the mean. The new “population mean”, as far as the breeder’s equation is concerned, is 118. As long as they mate endogamously, there will be no change in their average IQ thanks to regression (only through selection).

This is should illustrate the flaw in thinking that regression happens forever. If daughter populations regressed back to the mean of their original source populations indefinitely, how could there be any selection for quantitative traits? Think about it.

Now let’s return to individuals. Some think OK, if populations don’t regress forever, surely the descendants of any one pair of parents do, yes? Well, not necessarily. Let’s return to our example of the offspring of IQ 130 parents from mean IQ 120 families. When it comes time for their children (the second generation), with a mean IQ 126, to have children, we do again run the breeder’s equation. But the key fact here is that the mean value the third generation of children are regressing to is the mean of their respective families. If all of the 2nd generation parents mated with spouses from high mean IQ families, there would be little to no regression for the third. In other words, regression to the mean for individuals can be slowed or halted by assortative mating. This is why wealthy parents have concerned themselves with the family backgrounds of their children’s mates. And this is why Gregory Clark found what he found (see The Son Also Rises | West Hunter) – namely, very slow regression (around 10 generations, in many cases) to the population mean for families (indeed, virtually none in Indian castes, who only mate within caste).

Indeed, as I mentioned, the reason for regression is the same for individuals and populations. You see regression in populations because the exceptional individuals who comprise whatever select group in question are going to be coming from families of all different averages for whatever trait under consideration. The sum of all these individual regressions is going to be add up to regression towards the mean of the source population. (But as mentioned before, this only happens once.)

Hopefully, this serves to clear up the confusion on regression to the mean.

Clever people might notice that all of HBD is based on just two concepts: behavioral genetics (or again, more broadly, heritability) and the breeder’s equation. Know those two things and most of the rest follows.

 
Commenters to Ignore...to FollowEndorsed Only
    []
  1. How do we know that C is 0?

    Read More
    • Replies: @JayMan

    How do we know that C is 0?
     
    Read all about it:

    The Son Becomes The Father

    ReplyAgree/Disagree/Etc.
    AgreeDisagreeLOLTroll
    These buttons register your public Agreement, Disagreement, Troll, or LOL with the selected comment. They are ONLY available to recent, frequent commenters who have saved their Name+Email using the 'Remember My Information' checkbox, and may also ONLY be used once per hour.
    Sharing Comment via Twitter
    /jman/regression-to-the-mean/#comment-1197832
    More... This Commenter This Thread Hide Thread Display All Comments
  2. Jim says:

    Regression to the mean in statistics in general is not a causal effect or process. It is a sampling effect.

    Read More
    • Replies: @JayMan

    Regression to the mean in statistics in general is not a causal effect or process. It is a sampling effect.
     
    Quite correct. I almost put a section on that in my post, but I decided not too. Feel free to explain it in more details for the readers.
  3. JayMan says: • Website
    @Me in 2015
    How do we know that C is 0?

    How do we know that C is 0?

    Read all about it:

    The Son Becomes The Father

    Read More
    • Replies: @Anonymous
    Jay
    I have been arguing against cognitive elitism in the reactophere on the basis that in addition to other benefits proles are a larger producer of high IQ people than elites are partly because of regression [which i now understand a bit better } but mostly because greater numbers and since these prole sired high IQs will meet and mate at university etc they will soon stabilize and improve their trait. can you calculate if this is true and to what degree. say for whites in the US or europe. my view is considered lefty which im not but you as a liberal might enjoy liberalizing the far right a bit
  4. JayMan says: • Website
    @Jim
    Regression to the mean in statistics in general is not a causal effect or process. It is a sampling effect.

    Regression to the mean in statistics in general is not a causal effect or process. It is a sampling effect.

    Quite correct. I almost put a section on that in my post, but I decided not too. Feel free to explain it in more details for the readers.

    Read More
    • Replies: @Aaron Gross
    One very easy way to see that it's not a causal effect or process is to remember that it goes both forwards and backwards in time. For instance, just as our children regress towards the mean compared to us, our parents regress towards the mean compared to us as well. I think that fact can give people a better intuitive understanding of regression toward the mean.
  5. ”as improper as that metaphor is”

    just because you want. ;)

    metaphor is much more understandable or didatic because you are putting abstract specific ”things” in the familiar ”things” via logical association.

    Read More
  6. Anonymous says: • Disclaimer

    If two parents (let’s say White Americans) are +2σ for a trait, let’s say IQ, or 130, and we give the additive heritability of IQ to be about 0.6, we can expect their children to collectively have an average IQ of

    0.6 • +2 = +1.2σ

    …or 118. Now, this was assuming that their families had a mean IQ of 100. If their families had a different mean IQ, lets say 120 (+1.333σ), the breeder’s equation would give

    0.6 • (2 – 1.333)σ = +0.6667σ

    …or a mean IQ of 125 for the children. (That’s because it’s +0.6667σ plus the family mean IQ of +1.333σ.)

    What’s better, here’s another illustration. Let’s say the parents’ families have a mean IQ of 120, but the parents themselves have IQs of 110. Given the breeder’s equation,

    0.6 • (+0.6667 – 1.333)σ = –0.6667σ

    …for a mean IQ of 114 for their children (family mean IQ of +1.333σ minus 0.6667σ).

    Something’s gone wrong here. 0.6 • (2 – 1.3333)σ = 0.6 • (0.6667)σ = 0.4σ; by my calculation the second family should have children with mean IQ 126 (= 120 + 0.4*15). Then, 0.6 • (0.6667 – 1.3333)σ = 0.6 • (-0.6667)σ = -0.4σ, 6 points again, but… that makes the figure of mean child IQ 114 correct, which disagrees with the calculation for the middle family.

    Regression to the mean in genetics can be viewed as a direct effect, caused by genes that were suppressed by dominant genes coming to the fore in later generations (in individuals that didn’t inherit the dominant genes that suppressed them), but it can also be viewed as a sampling effect, where dominant genes mask stuff that’s really there and make that stuff hard to sample. It all depends on your perspective.

    I’ve been wondering about that one-time-only population regression after a selective step. Regression to the mean is a tool for predicting one outcome given a related outcome, and we can straightforwardly predict a child’s IQ (even a distribution for it) from the parents’ IQ. Taking from the example above, we’d predict that the children of 2 130 IQ parents of unknown background would have a normal IQ distribution centered around 118. If the parents were perfect predictors, the children should all have IQ 130 (exactly equal, not normally distributed around), but they’re not and they won’t. I believe (?) it’s standard to think of regression to the mean as reflecting the fact that the parents aren’t perfect predictors.

    One-time-only population regression seems to me to be equivalent to the statement that knowing a child’s four grandparents gives you exactly as much predictive power as knowing their two parents. This is hard to swallow; grandparents should be worse predictors than parents — and in fact in the domain of genetics specifically we can observe that, while every child receives exactly half of each parent’s genome, the contribution from each grandparent varies!

    Is there a multi-generational data set I could look at for something easy like height that illustrates total-grandparent-knowledge being just as good as total-parent-knowledge?

    Read More
    • Replies: @JayMan

    Something’s gone wrong here. 0.6 • (2 – 1.3333)σ = 0.6 • (0.6667)σ = 0.4σ; by my calculation the second family should have children with mean IQ 126 (= 120 + 0.4*15). Then, 0.6 • (0.6667 – 1.3333)σ = 0.6 • (-0.6667)σ = -0.4σ, 6 points again, but… that makes the figure of mean child IQ 114 correct, which disagrees with the calculation for the middle family.
     
    Yup, you're right. I screwed up my math. I'll fix it.

    Regression to the mean in genetics can be viewed as a direct effect, caused by genes that were suppressed by dominant genes coming to the fore in later generations (in individuals that didn’t inherit the dominant genes that suppressed them), but it can also be viewed as a sampling effect, where dominant genes mask stuff that’s really there and make that stuff hard to sample. It all depends on your perspective.
     
    Among other things (particularly, E). Basically, "luck" is everything other than additive genetics.

    I’ve been wondering about that one-time-only population regression after a selective step. Regression to the mean is a tool for predicting one outcome given a related outcome, and we can straightforwardly predict a child’s IQ (even a distribution for it) from the parents’ IQ. Taking from the example above, we’d predict that the children of 2 130 IQ parents of unknown background would have a normal IQ distribution centered around 118. If the parents were perfect predictors, the children should all have IQ 130
     
    Umm, meiosis? Have we forgotten what sex does?

    One-time-only population regression seems to me to be equivalent to the statement that knowing a child’s four grandparents gives you exactly as much predictive power as knowing their two parents. This is hard to swallow; grandparents should be worse predictors than parents — and in fact in the domain of genetics specifically we can observe that, while every child receives exactly half of each parent’s genome, the contribution from each grandparent varies!
     
    Actually, grandparents (the average of all four, that is) are better predictors than parents, because they tell you about family background. They control for the "luck" that expressed itself in the parents (non-additive genetics, developmental noise, etc.).
  7. JayMan says: • Website
    @Anonymous

    If two parents (let’s say White Americans) are +2σ for a trait, let’s say IQ, or 130, and we give the additive heritability of IQ to be about 0.6, we can expect their children to collectively have an average IQ of

    0.6 • +2 = +1.2σ

    …or 118. Now, this was assuming that their families had a mean IQ of 100. If their families had a different mean IQ, lets say 120 (+1.333σ), the breeder’s equation would give

    0.6 • (2 – 1.333)σ = +0.6667σ

    …or a mean IQ of 125 for the children. (That’s because it’s +0.6667σ plus the family mean IQ of +1.333σ.)

    What’s better, here’s another illustration. Let’s say the parents’ families have a mean IQ of 120, but the parents themselves have IQs of 110. Given the breeder’s equation,

    0.6 • (+0.6667 – 1.333)σ = –0.6667σ

    …for a mean IQ of 114 for their children (family mean IQ of +1.333σ minus 0.6667σ).
     
    Something's gone wrong here. 0.6 • (2 - 1.3333)σ = 0.6 • (0.6667)σ = 0.4σ; by my calculation the second family should have children with mean IQ 126 (= 120 + 0.4*15). Then, 0.6 • (0.6667 - 1.3333)σ = 0.6 • (-0.6667)σ = -0.4σ, 6 points again, but... that makes the figure of mean child IQ 114 correct, which disagrees with the calculation for the middle family.

    Regression to the mean in genetics can be viewed as a direct effect, caused by genes that were suppressed by dominant genes coming to the fore in later generations (in individuals that didn't inherit the dominant genes that suppressed them), but it can also be viewed as a sampling effect, where dominant genes mask stuff that's really there and make that stuff hard to sample. It all depends on your perspective.

    I've been wondering about that one-time-only population regression after a selective step. Regression to the mean is a tool for predicting one outcome given a related outcome, and we can straightforwardly predict a child's IQ (even a distribution for it) from the parents' IQ. Taking from the example above, we'd predict that the children of 2 130 IQ parents of unknown background would have a normal IQ distribution centered around 118. If the parents were perfect predictors, the children should all have IQ 130 (exactly equal, not normally distributed around), but they're not and they won't. I believe (?) it's standard to think of regression to the mean as reflecting the fact that the parents aren't perfect predictors.

    One-time-only population regression seems to me to be equivalent to the statement that knowing a child's four grandparents gives you exactly as much predictive power as knowing their two parents. This is hard to swallow; grandparents should be worse predictors than parents -- and in fact in the domain of genetics specifically we can observe that, while every child receives exactly half of each parent's genome, the contribution from each grandparent varies!

    Is there a multi-generational data set I could look at for something easy like height that illustrates total-grandparent-knowledge being just as good as total-parent-knowledge?

    Something’s gone wrong here. 0.6 • (2 – 1.3333)σ = 0.6 • (0.6667)σ = 0.4σ; by my calculation the second family should have children with mean IQ 126 (= 120 + 0.4*15). Then, 0.6 • (0.6667 – 1.3333)σ = 0.6 • (-0.6667)σ = -0.4σ, 6 points again, but… that makes the figure of mean child IQ 114 correct, which disagrees with the calculation for the middle family.

    Yup, you’re right. I screwed up my math. I’ll fix it.

    Regression to the mean in genetics can be viewed as a direct effect, caused by genes that were suppressed by dominant genes coming to the fore in later generations (in individuals that didn’t inherit the dominant genes that suppressed them), but it can also be viewed as a sampling effect, where dominant genes mask stuff that’s really there and make that stuff hard to sample. It all depends on your perspective.

    Among other things (particularly, E). Basically, “luck” is everything other than additive genetics.

    I’ve been wondering about that one-time-only population regression after a selective step. Regression to the mean is a tool for predicting one outcome given a related outcome, and we can straightforwardly predict a child’s IQ (even a distribution for it) from the parents’ IQ. Taking from the example above, we’d predict that the children of 2 130 IQ parents of unknown background would have a normal IQ distribution centered around 118. If the parents were perfect predictors, the children should all have IQ 130

    Umm, meiosis? Have we forgotten what sex does?

    One-time-only population regression seems to me to be equivalent to the statement that knowing a child’s four grandparents gives you exactly as much predictive power as knowing their two parents. This is hard to swallow; grandparents should be worse predictors than parents — and in fact in the domain of genetics specifically we can observe that, while every child receives exactly half of each parent’s genome, the contribution from each grandparent varies!

    Actually, grandparents (the average of all four, that is) are better predictors than parents, because they tell you about family background. They control for the “luck” that expressed itself in the parents (non-additive genetics, developmental noise, etc.).

    Read More
    • Replies: @J2
    Is there not some inheritance of luck also, that is, the parents of IQ 130 are probably better off than average and give a better environment, so the breeder equation should not only take the genetic inheritance, set here to 0.6, but inverited environment set to something, like 0.2 maybe. If so, the prediction from two parents is better than from four grandparents.
  8. Jamie_NYC says:

    Sorry, I still don’t understand it. The children get the genes only from their parents – why is the wider population relevant?

    Let us say that the trait is completely genetically determined, that it is influenced by, say, 10 genes, each of which has two alleles (A1 and B1, … A10 and B10), and each of which counts equally, As giving you higher individual, and Bs shorter. This will give you a Binomial distribution which is approximated by Normal one you plotted.

    The more As one has in the genome, the stronger trait one exhibits – if this was height, person with 10 A alleles will be super tall, with 10 Bs super short, etc. In this case, is there a reversion to the mean? I don’t see it… the total genome of the man+woman pair will have, say 16 As and 4 Bs (their average height is 8As out of 10), so the children will be very tall, on average, although an unlucky runt may inherit 4 Bs (and 6 As) and be only slightly taller than average. There is no mean reversion, no?

    Read More
    • Replies: @JayMan

    Let us say that the trait is completely genetically determined, that it is influenced by, say, 10 genes, each of which has two alleles (A1 and B1, … A10 and B10), and each of which counts equally, As giving you higher individual, and Bs shorter. This will give you a Binomial distribution which is approximated by Normal one you plotted.

    The more As one has in the genome, the stronger trait one exhibits – if this was height, person with 10 A alleles will be super tall, with 10 Bs super short, etc. In this case, is there a reversion to the mean? I don’t see it… the total genome of the man+woman pair will have, say 16 As and 4 Bs (their average height is 8As out of 10), so the children will be very tall, on average, although an unlucky runt may inherit 4 Bs (and 6 As) and be only slightly taller than average. There is no mean reversion, no?
     

    In that case, the phenotype would be completely determined by additive heredity (A = 100%, D, C, and E would all = 0). There would be no "luck" to go away. In that case, there would be no regression.
  9. Anonymous says: • Disclaimer

    I’m aware that parents aren’t perfect predictors. Obviously, meiosis is a large part of why. I don’t see the relevance to “if the parents were perfect predictors”, though.

    Actually, grandparents (the average of all four, that is) are better predictors than parents

    Can you point me to a good citation for this, or a good multigenerational data set?

    Read More
  10. aeolius says:

    Sorry but that is not all you need to know. Science marches on.
    Want to be up to date? Check out Transgenerational epigenetic inheritance. (Easily done on Wiki. More intellectually honest checking out references).
    Basically Lemark was at least a little correct. Responses to the environment can be inherited outside the schoolbook notions of neoDarwinism.
    And of course any organism who figures out how to do this has a great Darwinian advantage.

    Read More
    • Replies: @JayMan

    Sorry but that is not all you need to know. Science marches on.
    Want to be up to date? Check out Transgenerational epigenetic inheritance.
     
    Wrong place to bring up that bullshit, buddy (unless you're being facetious):

    https://youtu.be/w3310KWlDXg

  11. JayMan says: • Website
    @Jamie_NYC
    Sorry, I still don't understand it. The children get the genes only from their parents - why is the wider population relevant?

    Let us say that the trait is completely genetically determined, that it is influenced by, say, 10 genes, each of which has two alleles (A1 and B1, ... A10 and B10), and each of which counts equally, As giving you higher individual, and Bs shorter. This will give you a Binomial distribution which is approximated by Normal one you plotted.

    The more As one has in the genome, the stronger trait one exhibits - if this was height, person with 10 A alleles will be super tall, with 10 Bs super short, etc. In this case, is there a reversion to the mean? I don't see it... the total genome of the man+woman pair will have, say 16 As and 4 Bs (their average height is 8As out of 10), so the children will be very tall, on average, although an unlucky runt may inherit 4 Bs (and 6 As) and be only slightly taller than average. There is no mean reversion, no?

    Let us say that the trait is completely genetically determined, that it is influenced by, say, 10 genes, each of which has two alleles (A1 and B1, … A10 and B10), and each of which counts equally, As giving you higher individual, and Bs shorter. This will give you a Binomial distribution which is approximated by Normal one you plotted.

    The more As one has in the genome, the stronger trait one exhibits – if this was height, person with 10 A alleles will be super tall, with 10 Bs super short, etc. In this case, is there a reversion to the mean? I don’t see it… the total genome of the man+woman pair will have, say 16 As and 4 Bs (their average height is 8As out of 10), so the children will be very tall, on average, although an unlucky runt may inherit 4 Bs (and 6 As) and be only slightly taller than average. There is no mean reversion, no?

    In that case, the phenotype would be completely determined by additive heredity (A = 100%, D, C, and E would all = 0). There would be no “luck” to go away. In that case, there would be no regression.

    Read More
  12. JayMan says: • Website
    @aeolius
    Sorry but that is not all you need to know. Science marches on.
    Want to be up to date? Check out Transgenerational epigenetic inheritance. (Easily done on Wiki. More intellectually honest checking out references).
    Basically Lemark was at least a little correct. Responses to the environment can be inherited outside the schoolbook notions of neoDarwinism.
    And of course any organism who figures out how to do this has a great Darwinian advantage.

    Sorry but that is not all you need to know. Science marches on.
    Want to be up to date? Check out Transgenerational epigenetic inheritance.

    Wrong place to bring up that bullshit, buddy (unless you’re being facetious):

    Read More
    • Replies: @Hitler
    Hand waving away a whole new area of scientific study? You do realize that they have done DIRECT experiments that prove transgenerational epigenetics right?
  13. Food for thought; it reinforces my view that seeking a mate from “a good family” is among the best ways for sons and daughters to “marry lucky.” Why anyone would ignore this, given its logical connection to happiness in life, is inscrutable.

    Does your position shed any light on women who succumb to the current fad of producing children with people whose genetic contribution is probably down-market? This seems like entering Life’s Casino while yearning for Bad Luck.

    Read More
    • Replies: @JayMan

    Does your position shed any light on women who succumb to the current fad of producing children with people whose genetic contribution is probably down-market? This seems like entering Life’s Casino while yearning for Bad Luck.
     
    Is that actually what's happening?

    See Idiocracy Can Wait?

    , @Erik Sieven
    IQ is not everything. An extreme high share of german women have children with westafrican males. Those kids might on average become uni professors quite seldom, but popular culture, professional sports, etc. have a high demand for half-black kids, who are because of that in fact on average more successful than white german kids
  14. JayMan says: • Website
    @dc.sunsets
    Food for thought; it reinforces my view that seeking a mate from "a good family" is among the best ways for sons and daughters to "marry lucky." Why anyone would ignore this, given its logical connection to happiness in life, is inscrutable.

    Does your position shed any light on women who succumb to the current fad of producing children with people whose genetic contribution is probably down-market? This seems like entering Life's Casino while yearning for Bad Luck.

    Does your position shed any light on women who succumb to the current fad of producing children with people whose genetic contribution is probably down-market? This seems like entering Life’s Casino while yearning for Bad Luck.

    Is that actually what’s happening?

    See Idiocracy Can Wait?

    Read More
  15. Stogumber says:

    There’s something I’ve never understood. We can build categories or collectives of all kinds. For example, we can look at the child of parents as part of the population of American academics or of the white race or of the inhabitants of Detroit. Now I understand that “regression to the mean” means here, above all, regression to the mean of the parents A and B, and “regression to the mean of this or that collective” is only a comprehensive way to speak about all regressions of all individuals comprehended to the mean of their parents.
    I also see that “regression to the mean of the population X” is a necessary concept as long as our contrahent Forces it upon us to speak about the future of this or that population. But it seems to be rather nonsensical if we aren’t forced to speak about this or that population.

    Read More
    • Replies: @candid_observer
    Generally the relevant group for determining these population means will be those groups across which a fair amount of breeding takes place. Obviously, the qualitative term "a fair amount of breeding" can be replaced by a quantitative one.

    But, for example, there has been very little such breeding between any groups in SubSaharan Africa and those in Europe. Between countries in Europe, there's been more such breeding, although it may be fair in many cases to treat each nationality as mostly a distinct group for these purposes -- but, on still another hand, there may be relatively little difference on the relevant trait (such as IQ) in any case, for various obvious reasons (either both nationalities derived their IQs importantly from common ancestors, and/or they were subjected to very similar selection pressures.)

    , @Jim
    At an individual level all probabilities are zero or one.
  16. The outcome that C = 0 approaches being a reductio ad absurdum.

    We won’t know that the common environmental variance has no effect for major life outcomes until you explain away the reasons the claim seems patently ridiculous. [For instance, that members of a species that is unique in the amount of long-term care it requires somehow is indifferent to the quality of that care. And if shared-environment effects IQ across birth cohorts (as by nutrition in advanced countries), what's the plausibility that there will be no effect within cohorts?]

    There seems to be a place where heritability calculations can go wrong: if the gene/common environment interaction differs from the gene/unique environment interaction. A recent exchange in Criminology suggests to me that the dispute comes down to a burden of proof argument regarding the equality or inequality of these components.

    Read More
    • Replies: @JayMan

    The outcome that C = 0 approaches being a reductio ad absurdum.

    We won’t know that the common environmental variance has no effect for major life outcomes until you explain away the reasons the claim seems patently ridiculous.
     

    Look, measure after measure (see my above comment) finds that C = 0. This is an empirical matter. And the case is closed.

    And if shared-environment effects IQ across birth cohorts (as by nutrition in advanced countries), what's the plausibility that there will be no effect within cohorts?
     
    You know, this is an interesting point. If the shared environment has no effect within cohorts (and there's a whole lot of variation between families), then that greatly narrows down the type of environmental effects that could lead to observed differences between cohorts.

    if the gene/common environment interaction differs from the gene/unique environment interaction.
     
    Don't pin your hopes on interactions. It just don't fly.
  17. @Stogumber
    There's something I've never understood. We can build categories or collectives of all kinds. For example, we can look at the child of parents as part of the population of American academics or of the white race or of the inhabitants of Detroit. Now I understand that "regression to the mean" means here, above all, regression to the mean of the parents A and B, and "regression to the mean of this or that collective" is only a comprehensive way to speak about all regressions of all individuals comprehended to the mean of their parents.
    I also see that "regression to the mean of the population X" is a necessary concept as long as our contrahent Forces it upon us to speak about the future of this or that population. But it seems to be rather nonsensical if we aren't forced to speak about this or that population.

    Generally the relevant group for determining these population means will be those groups across which a fair amount of breeding takes place. Obviously, the qualitative term “a fair amount of breeding” can be replaced by a quantitative one.

    But, for example, there has been very little such breeding between any groups in SubSaharan Africa and those in Europe. Between countries in Europe, there’s been more such breeding, although it may be fair in many cases to treat each nationality as mostly a distinct group for these purposes — but, on still another hand, there may be relatively little difference on the relevant trait (such as IQ) in any case, for various obvious reasons (either both nationalities derived their IQs importantly from common ancestors, and/or they were subjected to very similar selection pressures.)

    Read More
    • Replies: @Stogumber
    candid observer #17,

    As long as we are speaking about the breeder's equation, we certainly have to look for groups with a tendency to inbreed. But even then it's questionable if "academics" or "white race" or "Detroiters" would be the group of our choice. Of all three groups we can assume that they in a way tend to inbreed, but their "mean" would be completely different.

    Even more so, if we are speaking about mathematical "regression to the mean" (I didn't understand if Jayman looks at the "breeder's equation" (or rather its outcome) as a variant of the mathematical regression or something completely different which only accidentally is subsumized under the same term).
  18. JayMan says: • Website
    @Stephen R. Diamond
    The outcome that C = 0 approaches being a reductio ad absurdum.

    We won't know that the common environmental variance has no effect for major life outcomes until you explain away the reasons the claim seems patently ridiculous. [For instance, that members of a species that is unique in the amount of long-term care it requires somehow is indifferent to the quality of that care. And if shared-environment effects IQ across birth cohorts (as by nutrition in advanced countries), what's the plausibility that there will be no effect within cohorts?]

    There seems to be a place where heritability calculations can go wrong: if the gene/common environment interaction differs from the gene/unique environment interaction. A recent exchange in Criminology suggests to me that the dispute comes down to a burden of proof argument regarding the equality or inequality of these components.

    The outcome that C = 0 approaches being a reductio ad absurdum.

    We won’t know that the common environmental variance has no effect for major life outcomes until you explain away the reasons the claim seems patently ridiculous.

    Look, measure after measure (see my above comment) finds that C = 0. This is an empirical matter. And the case is closed.

    And if shared-environment effects IQ across birth cohorts (as by nutrition in advanced countries), what’s the plausibility that there will be no effect within cohorts?

    You know, this is an interesting point. If the shared environment has no effect within cohorts (and there’s a whole lot of variation between families), then that greatly narrows down the type of environmental effects that could lead to observed differences between cohorts.

    if the gene/common environment interaction differs from the gene/unique environment interaction.

    Don’t pin your hopes on interactions. It just don’t fly.

    Read More
    • Replies: @szopen
    What do you think about the claim that adoption studies are not really representative, because foster parents are selected, i.e. they do not show the whole variation possible within a population? I know you were very critical of this guy who claimed shared environment influence was higher when he researched poor families, but I can't remember you have ever addressed this point (that parents in adoption studies are selected group with limited variability of environments).
    , @Aaron Gross

    You know, this is an interesting point. If the shared environment has no effect within cohorts (and there’s a whole lot of variation between families), then that greatly narrows down the type of environmental effects that could lead to observed differences between cohorts.
     
    That doesn't seem right. First of all, any new environment will by definition not have affected the variation within the previous cohort, although maybe that's what you meant by "greatly narrows."

    But it's not just new effects that can cause a big change between cohorts. For instance, suppose hypothetically that playing a certain obscure work by Mozart to infants greatly increases their IQs. If only a minuscule number of parents currently play that music, then the shared environmental effect will be negligible. But if everyone started playing that music, then there might be a huge difference between cohorts.

    This goes back to a statistical or logical fallacy that lots of people make, including famous people like Judith Rich Harris. All variances - those explained by genes, shared environment, etc. - are averages. It's a fallacy to say, "The shared environment effect is negligible, therefore none of the shared environments today have a strong effect on the trait." But that's exactly what some people say or imply.

    Finally, your statement seems wrong for a much more general reason. While for a given cohort the mean is fixed, between cohorts the mean is changing. You have no way of knowing a priori what effects a change in the mean will have.

    , @Stephen R. Diamond

    Look, measure after measure (see my above comment) finds that C = 0. This is an empirical matter. And the case is closed.
     
    You didn't express this degree of certainty when responding to Aaron Gross: "Except that for the shared environment, the fact of the matter is we have reason to believe that zero means zero. See: Apples, Oranges, and Lesbians: The Nurture Assumption Just Will Not Die."

    I'll read your piece before commenting on interactions; here I only seek clarification as to which position expresses your real degree of confidence. I doubt the degree of confidence you expressed in reply to me can be justified, when an informed and objective commenter like Ron Unz has concluded that there must be some undiscovered error behind the c = 0 conclusion. [Why isn't c = 0 for height - to interject a question of my own.]

    On the other hand, if the heritability studies only "give us reason to believe," other evidence might give us greater reason to believe otherwise. Speaking now only hypothetically.

    Pointing out that the issue is "empirical" is ... I don't know .. a bit demagogic. Of course it's empirical. What else might it be? Logical? Metaphysical? But heritability studies aren't the only relevant empirical evidence, good scientists don't ignore evidence that hasn't been scientifically verified.
  19. Art says:

    There is a regression to the intellectual mean by three out of four offspring – but one in four offspring gets the best genes of both parents. This does not work for Newton and Darwin grate intellects – but it does for most others.

    Read More
  20. szopen says:
    @JayMan

    The outcome that C = 0 approaches being a reductio ad absurdum.

    We won’t know that the common environmental variance has no effect for major life outcomes until you explain away the reasons the claim seems patently ridiculous.
     

    Look, measure after measure (see my above comment) finds that C = 0. This is an empirical matter. And the case is closed.

    And if shared-environment effects IQ across birth cohorts (as by nutrition in advanced countries), what's the plausibility that there will be no effect within cohorts?
     
    You know, this is an interesting point. If the shared environment has no effect within cohorts (and there's a whole lot of variation between families), then that greatly narrows down the type of environmental effects that could lead to observed differences between cohorts.

    if the gene/common environment interaction differs from the gene/unique environment interaction.
     
    Don't pin your hopes on interactions. It just don't fly.

    What do you think about the claim that adoption studies are not really representative, because foster parents are selected, i.e. they do not show the whole variation possible within a population? I know you were very critical of this guy who claimed shared environment influence was higher when he researched poor families, but I can’t remember you have ever addressed this point (that parents in adoption studies are selected group with limited variability of environments).

    Read More
  21. Nice article. We could talk about regression to the mean with professional athletes, and everybody would immediately get it, there would be no argument. But toss in intelligence as the example of luck evening out in the next generation and some folks get confused and positively cranky. Anyway keep up the good work Jayman.

    Read More
  22. Jim says:
    @Stogumber
    There's something I've never understood. We can build categories or collectives of all kinds. For example, we can look at the child of parents as part of the population of American academics or of the white race or of the inhabitants of Detroit. Now I understand that "regression to the mean" means here, above all, regression to the mean of the parents A and B, and "regression to the mean of this or that collective" is only a comprehensive way to speak about all regressions of all individuals comprehended to the mean of their parents.
    I also see that "regression to the mean of the population X" is a necessary concept as long as our contrahent Forces it upon us to speak about the future of this or that population. But it seems to be rather nonsensical if we aren't forced to speak about this or that population.

    At an individual level all probabilities are zero or one.

    Read More
  23. Stogumber says:
    @candid_observer
    Generally the relevant group for determining these population means will be those groups across which a fair amount of breeding takes place. Obviously, the qualitative term "a fair amount of breeding" can be replaced by a quantitative one.

    But, for example, there has been very little such breeding between any groups in SubSaharan Africa and those in Europe. Between countries in Europe, there's been more such breeding, although it may be fair in many cases to treat each nationality as mostly a distinct group for these purposes -- but, on still another hand, there may be relatively little difference on the relevant trait (such as IQ) in any case, for various obvious reasons (either both nationalities derived their IQs importantly from common ancestors, and/or they were subjected to very similar selection pressures.)

    candid observer #17,

    As long as we are speaking about the breeder’s equation, we certainly have to look for groups with a tendency to inbreed. But even then it’s questionable if “academics” or “white race” or “Detroiters” would be the group of our choice. Of all three groups we can assume that they in a way tend to inbreed, but their “mean” would be completely different.

    Even more so, if we are speaking about mathematical “regression to the mean” (I didn’t understand if Jayman looks at the “breeder’s equation” (or rather its outcome) as a variant of the mathematical regression or something completely different which only accidentally is subsumized under the same term).

    Read More
  24. Hipster says:

    Lets imagine two people having a kid who are both mixed race.

    The father half white and half black. The mother is half Korean and half Ashkenazi Jew.

    Would it be appropriate to just average these populations?

    So if African American mean IQ is 85 and white is 100, take for the father’s mean 92.5. And if Ashkenazi mean IQ is 110 and Korean 105, take for the mother’s populational mean 107.5. Then average those two numbers out to 100, and expect 100 to be the mean that their kids would regress to?

    Read More
    • Replies: @JayMan

    Lets imagine two people having a kid who are both mixed race.

    The father half white and half black. The mother is half Korean and half Ashkenazi Jew.

    Would it be appropriate to just average these populations?
     

    If you knew nothing about their respective family backgrounds, yes. If you do, that changes a lot.
  25. For start to understand regression to mean you just need look for people around.

    Family, friends, etc

    Read More
  26. @dc.sunsets
    Food for thought; it reinforces my view that seeking a mate from "a good family" is among the best ways for sons and daughters to "marry lucky." Why anyone would ignore this, given its logical connection to happiness in life, is inscrutable.

    Does your position shed any light on women who succumb to the current fad of producing children with people whose genetic contribution is probably down-market? This seems like entering Life's Casino while yearning for Bad Luck.

    IQ is not everything. An extreme high share of german women have children with westafrican males. Those kids might on average become uni professors quite seldom, but popular culture, professional sports, etc. have a high demand for half-black kids, who are because of that in fact on average more successful than white german kids

    Read More
  27. Anonymous says: • Disclaimer
    @JayMan

    How do we know that C is 0?
     
    Read all about it:

    The Son Becomes The Father

    Jay
    I have been arguing against cognitive elitism in the reactophere on the basis that in addition to other benefits proles are a larger producer of high IQ people than elites are partly because of regression [which i now understand a bit better } but mostly because greater numbers and since these prole sired high IQs will meet and mate at university etc they will soon stabilize and improve their trait. can you calculate if this is true and to what degree. say for whites in the US or europe. my view is considered lefty which im not but you as a liberal might enjoy liberalizing the far right a bit

    Read More
    • Replies: @JayMan

    I have been arguing against cognitive elitism in the reactophere on the basis that in addition to other benefits proles are a larger producer of high IQ people than elites are partly because of regression [which i now understand a bit better } but mostly because greater numbers
     
    I'm not sure that's true.

    In general, assortative mating stalls regression. That's how castes (or near castes) form.

  28. JayMan says: • Website
    @Hipster
    Lets imagine two people having a kid who are both mixed race.

    The father half white and half black. The mother is half Korean and half Ashkenazi Jew.

    Would it be appropriate to just average these populations?

    So if African American mean IQ is 85 and white is 100, take for the father's mean 92.5. And if Ashkenazi mean IQ is 110 and Korean 105, take for the mother's populational mean 107.5. Then average those two numbers out to 100, and expect 100 to be the mean that their kids would regress to?

    Lets imagine two people having a kid who are both mixed race.

    The father half white and half black. The mother is half Korean and half Ashkenazi Jew.

    Would it be appropriate to just average these populations?

    If you knew nothing about their respective family backgrounds, yes. If you do, that changes a lot.

    Read More
  29. JayMan says: • Website
    @Anonymous
    Jay
    I have been arguing against cognitive elitism in the reactophere on the basis that in addition to other benefits proles are a larger producer of high IQ people than elites are partly because of regression [which i now understand a bit better } but mostly because greater numbers and since these prole sired high IQs will meet and mate at university etc they will soon stabilize and improve their trait. can you calculate if this is true and to what degree. say for whites in the US or europe. my view is considered lefty which im not but you as a liberal might enjoy liberalizing the far right a bit

    I have been arguing against cognitive elitism in the reactophere on the basis that in addition to other benefits proles are a larger producer of high IQ people than elites are partly because of regression [which i now understand a bit better } but mostly because greater numbers

    I’m not sure that’s true.

    In general, assortative mating stalls regression. That’s how castes (or near castes) form.

    Read More
    • Replies: @Wizard of Oz
    May I ask you to turn your attention to a Hbd matter which is perhaps not an order of magnitude less important than IQ but rarely treated as a normally distributed characteristic?

    I refer to the number of hours sleep different individuals need and the approximate inverse number of constructive hours work they can put in each day.

    My starting point is countless articles and interviews telling us that we need (as adults) 7.5 or 8 hours sleep for various restorative and other housekeeping functions and that, ever since Thomas Edison became famous for only needing four hours sleep Western civilization has been infected with chronic sleep deficits. Well, maybe, but.....

    It seems clear that our hours of sleep allow a great many different functions to occur from recharging some endocrine/hormone supplies or their glandular sources to arranging and consolidating memories to repairing muscle fibre damage and much more.

    Presumably these processes are controlled by a large number of genes plus epigenesis and there is no reason to suppose that their identity and efficacy wouldn't be distributed normally in much the same way as genes for IQ and other mental characteristics. A point which I have not heard raised but which seems prima facie correct is that there would be only a loose connection - if any - between genes for one restorative function and another. Thus there is no reason to suppose that the clever person who was blessed with being able to use his brain effectively for 17 hours a day (and become Chief Justice let us suppose) is necessarily going to be able to keep his cardio-vascular system healthy without another two hours sleep.

    My guess is that the healthy adult's requirement is on average about 7.5 hours and that the SD is about 50 minutes. Have you an opinion on this, even evidence? And do you know of anything bearing on my hypothesis that not all sleep's functions would be performed equally effectively in the average individual? It could certainly help explain the collapse in health of some people whose brains had achieved great things although it is my experience that the imagination and lateral thinking which I really enjoy tends to fail me when I am forced to push myself without sleep to keep on exerting expertise in some reasonably testing situation in which one can perform satisfactorily because of practice and experience.

    , @Anonymous
    True but wouldn't proles contribute at least as many high IQ university students as the elites?
    { Say elites produce 100% high IQ students and all go to university, and proles produce 1 out of 100 of the prole population with a plus 130 IQ and they all go to university, and prole pop is is 100x the elite population of over 130 IQ} I chose >130 IQ because i think that's the 1%, adjust if im off.
    So now we have an equal number of stabilized high IQ elite children and regression prone prole High IQ children at university together. Even without any further mating proles have doubled the number of the nations high IQ quotient. Further assuming the elites can and want to still mate only with their class, and the prole university kids all marry out of the prole elites group to average prole mates. The proles will continue to add as many cognitive elites every year as the elites do.
    BUT what I think will/ does actually happen is elites have a much harder time identifying each other at university and very little interest in perpetuating a class division and so in reality they are mating as often with high IQ proles as high IQ elites.
    Now if you agree with me so far the question I am not informed enough to answer is how much regression are the elites picking up and how much are the proles losing in these mixed mating's what is the net gain or loss in the next generation as measure against a pure bred model.
    I would think if it is even a wash its still quite a gain because the elite pool is growing but it could be there's a increase in breadth and a loss of height to be considered, but I suspect the diminishing odds of of super high IQs in the long run benefit more from larger pools than more concentrated input.
  30. Langley says:

    It should be “towards the mean.”

    Read More
    • Replies: @Emil Kirkegaard
    I want to second this. The reason to prefer this wording is that it doesn't suggest that the regression is always complete or will be at some point in later generations. "regression to the mean" makes these misunderstandings more common I think.
  31. For populations, the equation works similarly. Hence, if a group of people with a mean IQ of 130 (who come from population with a mean IQ of 100) go off somewhere and have children, the next generation will have a mean IQ of 118. Now here’s the part that gives a lot of people trouble: the children of the children of this group, the third generation, will also have a mean IQ of 118. Why? Because the initial event changed the mean.

    Isn’t it important to stress here that the first two individuals “come from population about which we know nothing more than that the entire population has a mean IQ of 100″? In particular, you have to be ignorant about their parent’s IQ. That would help people’s “trouble” with the statistics of the next generation.

    Read More
  32. ren says:

    I think the point so many miss is that this is for averages for sufficiently large groups. We can all tell anecdotes about friends who are average height but their son is 6’5″ or some such.

    Regression to the mean is generally true and true for sufficiently large groups. There are outliers.

    So, Joe is the smartest from his family and Susie the smartest of her family. If they have ten kids, the average of those kids will regress toward the mean, but any given child could be quite far from the mean.

    Read More
    • Replies: @JayMan

    I think the point so many miss is that this is for averages for sufficiently large groups. We can all tell anecdotes about friends who are average height but their son is 6’5″ or some such.

    Regression to the mean is generally true and true for sufficiently large groups. There are outliers.
     

    Yup. For individuals, the breeder's equation only helps you predict probabilities. Statistics of small numbers is very much in play.

    Something I almost added to the post, but I (correctly) figured someone would mention it.

  33. @JayMan

    I have been arguing against cognitive elitism in the reactophere on the basis that in addition to other benefits proles are a larger producer of high IQ people than elites are partly because of regression [which i now understand a bit better } but mostly because greater numbers
     
    I'm not sure that's true.

    In general, assortative mating stalls regression. That's how castes (or near castes) form.

    May I ask you to turn your attention to a Hbd matter which is perhaps not an order of magnitude less important than IQ but rarely treated as a normally distributed characteristic?

    I refer to the number of hours sleep different individuals need and the approximate inverse number of constructive hours work they can put in each day.

    My starting point is countless articles and interviews telling us that we need (as adults) 7.5 or 8 hours sleep for various restorative and other housekeeping functions and that, ever since Thomas Edison became famous for only needing four hours sleep Western civilization has been infected with chronic sleep deficits. Well, maybe, but…..

    It seems clear that our hours of sleep allow a great many different functions to occur from recharging some endocrine/hormone supplies or their glandular sources to arranging and consolidating memories to repairing muscle fibre damage and much more.

    Presumably these processes are controlled by a large number of genes plus epigenesis and there is no reason to suppose that their identity and efficacy wouldn’t be distributed normally in much the same way as genes for IQ and other mental characteristics. A point which I have not heard raised but which seems prima facie correct is that there would be only a loose connection – if any – between genes for one restorative function and another. Thus there is no reason to suppose that the clever person who was blessed with being able to use his brain effectively for 17 hours a day (and become Chief Justice let us suppose) is necessarily going to be able to keep his cardio-vascular system healthy without another two hours sleep.

    My guess is that the healthy adult’s requirement is on average about 7.5 hours and that the SD is about 50 minutes. Have you an opinion on this, even evidence? And do you know of anything bearing on my hypothesis that not all sleep’s functions would be performed equally effectively in the average individual? It could certainly help explain the collapse in health of some people whose brains had achieved great things although it is my experience that the imagination and lateral thinking which I really enjoy tends to fail me when I am forced to push myself without sleep to keep on exerting expertise in some reasonably testing situation in which one can perform satisfactorily because of practice and experience.

    Read More
    • Replies: @JayMan

    My guess is that the healthy adult’s requirement is on average about 7.5 hours and that the SD is about 50 minutes. Have you an opinion on this, even evidence?
     
    Probably something like that. Yes, there is great variation in the minimum amount of sleep individuals need to function normally.

    No idea about group variation in such.

  34. Hitler says:
    @JayMan

    Sorry but that is not all you need to know. Science marches on.
    Want to be up to date? Check out Transgenerational epigenetic inheritance.
     
    Wrong place to bring up that bullshit, buddy (unless you're being facetious):

    https://youtu.be/w3310KWlDXg

    Hand waving away a whole new area of scientific study? You do realize that they have done DIRECT experiments that prove transgenerational epigenetics right?

    Read More
    • Replies: @JayMan

    Hand waving away a whole new area of scientific study? You do realize that they have done DIRECT experiments that prove transgenerational epigenetics right?
     
    Maybe it's time for me to write an epigenetics (shitting on such) post?
  35. @JayMan

    The outcome that C = 0 approaches being a reductio ad absurdum.

    We won’t know that the common environmental variance has no effect for major life outcomes until you explain away the reasons the claim seems patently ridiculous.
     

    Look, measure after measure (see my above comment) finds that C = 0. This is an empirical matter. And the case is closed.

    And if shared-environment effects IQ across birth cohorts (as by nutrition in advanced countries), what's the plausibility that there will be no effect within cohorts?
     
    You know, this is an interesting point. If the shared environment has no effect within cohorts (and there's a whole lot of variation between families), then that greatly narrows down the type of environmental effects that could lead to observed differences between cohorts.

    if the gene/common environment interaction differs from the gene/unique environment interaction.
     
    Don't pin your hopes on interactions. It just don't fly.

    You know, this is an interesting point. If the shared environment has no effect within cohorts (and there’s a whole lot of variation between families), then that greatly narrows down the type of environmental effects that could lead to observed differences between cohorts.

    That doesn’t seem right. First of all, any new environment will by definition not have affected the variation within the previous cohort, although maybe that’s what you meant by “greatly narrows.”

    But it’s not just new effects that can cause a big change between cohorts. For instance, suppose hypothetically that playing a certain obscure work by Mozart to infants greatly increases their IQs. If only a minuscule number of parents currently play that music, then the shared environmental effect will be negligible. But if everyone started playing that music, then there might be a huge difference between cohorts.

    This goes back to a statistical or logical fallacy that lots of people make, including famous people like Judith Rich Harris. All variances – those explained by genes, shared environment, etc. – are averages. It’s a fallacy to say, “The shared environment effect is negligible, therefore none of the shared environments today have a strong effect on the trait.” But that’s exactly what some people say or imply.

    Finally, your statement seems wrong for a much more general reason. While for a given cohort the mean is fixed, between cohorts the mean is changing. You have no way of knowing a priori what effects a change in the mean will have.

    Read More
    • Replies: @JayMan

    But it’s not just new effects that can cause a big change between cohorts. For instance, suppose hypothetically that playing a certain obscure work by Mozart to infants greatly increases their IQs. If only a minuscule number of parents currently play that music, then the shared environmental effect will be negligible. But if everyone started playing that music, then there might be a huge difference between cohorts.

    This goes back to a statistical or logical fallacy that lots of people make, including famous people like Judith Rich Harris. All variances – those explained by genes, shared environment, etc. – are averages. It’s a fallacy to say, “The shared environment effect is negligible, therefore none of the shared environments today have a strong effect on the trait.” But that’s exactly what some people say or imply.
     

    Except that for the shared environment, the fact of the matter is we have reason to believe that zero means zero. See: Apples, Oranges, and Lesbians: The Nurture Assumption Just Will Not Die

    Finally, your statement seems wrong for a much more general reason. While for a given cohort the mean is fixed, between cohorts the mean is changing. You have no way of knowing a priori what effects a change in the mean will have.
     
    We know it means nothing for behavioral genetic studies.
  36. @JayMan

    Regression to the mean in statistics in general is not a causal effect or process. It is a sampling effect.
     
    Quite correct. I almost put a section on that in my post, but I decided not too. Feel free to explain it in more details for the readers.

    One very easy way to see that it’s not a causal effect or process is to remember that it goes both forwards and backwards in time. For instance, just as our children regress towards the mean compared to us, our parents regress towards the mean compared to us as well. I think that fact can give people a better intuitive understanding of regression toward the mean.

    Read More
  37. JayMan says: • Website
    @ren
    I think the point so many miss is that this is for averages for sufficiently large groups. We can all tell anecdotes about friends who are average height but their son is 6'5" or some such.

    Regression to the mean is generally true and true for sufficiently large groups. There are outliers.

    So, Joe is the smartest from his family and Susie the smartest of her family. If they have ten kids, the average of those kids will regress toward the mean, but any given child could be quite far from the mean.

    I think the point so many miss is that this is for averages for sufficiently large groups. We can all tell anecdotes about friends who are average height but their son is 6’5″ or some such.

    Regression to the mean is generally true and true for sufficiently large groups. There are outliers.

    Yup. For individuals, the breeder’s equation only helps you predict probabilities. Statistics of small numbers is very much in play.

    Something I almost added to the post, but I (correctly) figured someone would mention it.

    Read More
  38. JayMan says: • Website
    @Wizard of Oz
    May I ask you to turn your attention to a Hbd matter which is perhaps not an order of magnitude less important than IQ but rarely treated as a normally distributed characteristic?

    I refer to the number of hours sleep different individuals need and the approximate inverse number of constructive hours work they can put in each day.

    My starting point is countless articles and interviews telling us that we need (as adults) 7.5 or 8 hours sleep for various restorative and other housekeeping functions and that, ever since Thomas Edison became famous for only needing four hours sleep Western civilization has been infected with chronic sleep deficits. Well, maybe, but.....

    It seems clear that our hours of sleep allow a great many different functions to occur from recharging some endocrine/hormone supplies or their glandular sources to arranging and consolidating memories to repairing muscle fibre damage and much more.

    Presumably these processes are controlled by a large number of genes plus epigenesis and there is no reason to suppose that their identity and efficacy wouldn't be distributed normally in much the same way as genes for IQ and other mental characteristics. A point which I have not heard raised but which seems prima facie correct is that there would be only a loose connection - if any - between genes for one restorative function and another. Thus there is no reason to suppose that the clever person who was blessed with being able to use his brain effectively for 17 hours a day (and become Chief Justice let us suppose) is necessarily going to be able to keep his cardio-vascular system healthy without another two hours sleep.

    My guess is that the healthy adult's requirement is on average about 7.5 hours and that the SD is about 50 minutes. Have you an opinion on this, even evidence? And do you know of anything bearing on my hypothesis that not all sleep's functions would be performed equally effectively in the average individual? It could certainly help explain the collapse in health of some people whose brains had achieved great things although it is my experience that the imagination and lateral thinking which I really enjoy tends to fail me when I am forced to push myself without sleep to keep on exerting expertise in some reasonably testing situation in which one can perform satisfactorily because of practice and experience.

    My guess is that the healthy adult’s requirement is on average about 7.5 hours and that the SD is about 50 minutes. Have you an opinion on this, even evidence?

    Probably something like that. Yes, there is great variation in the minimum amount of sleep individuals need to function normally.

    No idea about group variation in such.

    Read More
  39. JayMan says: • Website
    @Hitler
    Hand waving away a whole new area of scientific study? You do realize that they have done DIRECT experiments that prove transgenerational epigenetics right?

    Hand waving away a whole new area of scientific study? You do realize that they have done DIRECT experiments that prove transgenerational epigenetics right?

    Maybe it’s time for me to write an epigenetics (shitting on such) post?

    Read More
    • Replies: @Hitler
    Please do.
    , @szopen
    I'd prefer that you would rather write a detailed explanation on methodology behind twin studies. For example, after reading both Hanscombe, Trzaskowski et al article (about heritability in UK twins) and wikipedia articles on twin studies, I feel dumber than before.

    I mean I understand that you prefer not to answer to question you think are stupid, or your first reaction to someone writing "I feel dumber than before" may be "maybe it's because you are dumb", but still quite a lot of readers would gain a lot from simple (simplified?) explanation of the twin studies models.
    , @RaceRealist88
    Steven Pinker has this to say on epigenetics:

    Molecular biologists have appropriated the term "gene" to refer to stretches of DNA that code for a protein. Unfortunately, this sense differs from the one used in population genetics, behavioral genetics, and evolutionary theory, namely any information carrier that is transmissible across generations and has sustained effects on the phenotype. This includes any aspect of DNA that can affect gene expression, and is closer to what is meant by "innate" than genes in the molecular biologists' narrow sense. The confusion between the two leads to innumerable red herrings in discussions of our makeup, such as the banality that the expression of genes (in the sense of protein-coding stretches of DNA) is regulated by signals from the environment. How else could it be? The alternative is that every cell synthesizes every protein all the time! The epigenetics bubble inflated by the science media is based on a similar confusion.
     


    https://www.edge.org/response-detail/25337

    If you haven't picked that book up yet, I recommend it JayMan. It's a great read.
  40. JayMan says: • Website
    @Aaron Gross

    You know, this is an interesting point. If the shared environment has no effect within cohorts (and there’s a whole lot of variation between families), then that greatly narrows down the type of environmental effects that could lead to observed differences between cohorts.
     
    That doesn't seem right. First of all, any new environment will by definition not have affected the variation within the previous cohort, although maybe that's what you meant by "greatly narrows."

    But it's not just new effects that can cause a big change between cohorts. For instance, suppose hypothetically that playing a certain obscure work by Mozart to infants greatly increases their IQs. If only a minuscule number of parents currently play that music, then the shared environmental effect will be negligible. But if everyone started playing that music, then there might be a huge difference between cohorts.

    This goes back to a statistical or logical fallacy that lots of people make, including famous people like Judith Rich Harris. All variances - those explained by genes, shared environment, etc. - are averages. It's a fallacy to say, "The shared environment effect is negligible, therefore none of the shared environments today have a strong effect on the trait." But that's exactly what some people say or imply.

    Finally, your statement seems wrong for a much more general reason. While for a given cohort the mean is fixed, between cohorts the mean is changing. You have no way of knowing a priori what effects a change in the mean will have.

    But it’s not just new effects that can cause a big change between cohorts. For instance, suppose hypothetically that playing a certain obscure work by Mozart to infants greatly increases their IQs. If only a minuscule number of parents currently play that music, then the shared environmental effect will be negligible. But if everyone started playing that music, then there might be a huge difference between cohorts.

    This goes back to a statistical or logical fallacy that lots of people make, including famous people like Judith Rich Harris. All variances – those explained by genes, shared environment, etc. – are averages. It’s a fallacy to say, “The shared environment effect is negligible, therefore none of the shared environments today have a strong effect on the trait.” But that’s exactly what some people say or imply.

    Except that for the shared environment, the fact of the matter is we have reason to believe that zero means zero. See: Apples, Oranges, and Lesbians: The Nurture Assumption Just Will Not Die

    Finally, your statement seems wrong for a much more general reason. While for a given cohort the mean is fixed, between cohorts the mean is changing. You have no way of knowing a priori what effects a change in the mean will have.

    We know it means nothing for behavioral genetic studies.

    Read More
    • Replies: @Aaron Gross
    I read your article you linked to, and I don't see what it has to do with my point. It says that if the additive effects are negligible, in practice we can expect that the interactive effects will be negligible as well (though they don't have to be), because it would be surprising for the mechanism to exactly balance out additively.

    I agree, but that doesn't apply to my point. If there's a (currently) rare treatment, then because it's rare, we would expect the overall shared-environment effect to be negligible, even if the treatment had a strong effect.

    Re your reply that a change in means over time "means nothing for behavioral genetic studies": Well, it's a type of environmental effect that's totally invisible to the kind of studies your talking about. That says only that the studies themselves are limited, nothing wrong with that. But it also says that many people (including you, but you're in good company) interpret the findings of the studies wrongly, by drawing conclusions that go far beyond what the data imply. By the way, there are plenty of people who have pointed this out, I'm not claiming any originality here.
  41. Hitler says:
    @JayMan

    Hand waving away a whole new area of scientific study? You do realize that they have done DIRECT experiments that prove transgenerational epigenetics right?
     
    Maybe it's time for me to write an epigenetics (shitting on such) post?

    Please do.

    Read More
  42. I think we also have look for regression to the mean as individual proportion of favorable biological variables that produce a set of intelligence phenotypes spectrum. Everyone inherited a certain favorable proportion if intelligence(s) is(are) polygenic.

    Would be interesting look for families with only sons and with only girls. Are there significant trends between couples of different sex ratio among their children?

    I don’t know if it’s correct to say but we will go try…

    Regression to the mean metaphorically speaking is like you threw a little quantity of red paint into a bucket with blue paint. The red color will appear occasionally, if you mix the paint.

    The more red ink in the bucket you play, the greater will be your quantitative presence.

    Another metaphor. Duplication of a cell. Do you have a population ” with ” average IQ of 90. So the smartest begin to interbreed, we think they decided to found a divergent worship where they secretly only those who score 3 digits in IQ can participate.

    Initially, there will be many cases of regression to the mean, by logic, because you have many individuals with unfavorable mutational load for greater intelligence who are getting married to each other. Then, over time, going with progressive segregation those with (contextually, i mean intelligence) favorable mutational load and over time, it will occur to fixation / prevalence of these favorable genes.

    First we have the emergence of a genetic insularity within a larger gene pool. Then over time, you have the separation of this deviant group until the moment they are not as related as before.

    Let’s assume that you ‘have’ a iq 130 within a community where the average IQ is 90.

    First, you’re likely to marry within this community, especially if the community is inbreeding,

    Second, you will have trouble finding a spouse with the same average IQ than you,

    Third, it is likely that you will have low genetic load for greater intelligence, especially if you’re a cognitive outlier within your family (one Lisa Simpson), because, high levels of inbreeding tend to depress ” intelligence ” (or type of intelligence that tends to be related to IQ and fluid moral intelligence, if it exists),

    Room, you also need to know if the spouse to choose comes from a family with greater intelligence. Generally, families tend to cluster by social class,

    Fifth, it is possible to conclude that heredity vary with its age. So, the older you are, the better the chances to pass mutant genes, which may or may not depress intelligence (this should also be investigated more hard). Having children too soon also may cause problems or reduce the biologic potential of its progeny.

    I’m very curious about the Nazi experiment in a city in southern Brazil (and Argentina) where, it seems, an hour to the other, began to be born twins in a large percentage. If this was really true or if there were an excessive history of twins in this city.

    It seems that there is an inheritance hierarchy, as did the experiment (quasi-unethical, but valid, not to cause suffering to the ” animal ”) with the mouse, it just got smarter.

    Maybe you can make a recessive gene or even of polygenic nature, in a dominant gene. Anyway, I’m not a geneticist, just curious.

    Read More
  43. szopen says:
    @JayMan

    Hand waving away a whole new area of scientific study? You do realize that they have done DIRECT experiments that prove transgenerational epigenetics right?
     
    Maybe it's time for me to write an epigenetics (shitting on such) post?

    I’d prefer that you would rather write a detailed explanation on methodology behind twin studies. For example, after reading both Hanscombe, Trzaskowski et al article (about heritability in UK twins) and wikipedia articles on twin studies, I feel dumber than before.

    I mean I understand that you prefer not to answer to question you think are stupid, or your first reaction to someone writing “I feel dumber than before” may be “maybe it’s because you are dumb”, but still quite a lot of readers would gain a lot from simple (simplified?) explanation of the twin studies models.

    Read More
    • Replies: @Hitler
    No, no please I want to see this great shitting refutation of epigenetics.

    ...Please.

  44. Hitler says:
    @szopen
    I'd prefer that you would rather write a detailed explanation on methodology behind twin studies. For example, after reading both Hanscombe, Trzaskowski et al article (about heritability in UK twins) and wikipedia articles on twin studies, I feel dumber than before.

    I mean I understand that you prefer not to answer to question you think are stupid, or your first reaction to someone writing "I feel dumber than before" may be "maybe it's because you are dumb", but still quite a lot of readers would gain a lot from simple (simplified?) explanation of the twin studies models.

    No, no please I want to see this great shitting refutation of epigenetics.

    …Please.

    Read More
  45. Anonymous says: • Disclaimer
    @JayMan

    I have been arguing against cognitive elitism in the reactophere on the basis that in addition to other benefits proles are a larger producer of high IQ people than elites are partly because of regression [which i now understand a bit better } but mostly because greater numbers
     
    I'm not sure that's true.

    In general, assortative mating stalls regression. That's how castes (or near castes) form.

    True but wouldn’t proles contribute at least as many high IQ university students as the elites?
    { Say elites produce 100% high IQ students and all go to university, and proles produce 1 out of 100 of the prole population with a plus 130 IQ and they all go to university, and prole pop is is 100x the elite population of over 130 IQ} I chose >130 IQ because i think that’s the 1%, adjust if im off.
    So now we have an equal number of stabilized high IQ elite children and regression prone prole High IQ children at university together. Even without any further mating proles have doubled the number of the nations high IQ quotient. Further assuming the elites can and want to still mate only with their class, and the prole university kids all marry out of the prole elites group to average prole mates. The proles will continue to add as many cognitive elites every year as the elites do.
    BUT what I think will/ does actually happen is elites have a much harder time identifying each other at university and very little interest in perpetuating a class division and so in reality they are mating as often with high IQ proles as high IQ elites.
    Now if you agree with me so far the question I am not informed enough to answer is how much regression are the elites picking up and how much are the proles losing in these mixed mating’s what is the net gain or loss in the next generation as measure against a pure bred model.
    I would think if it is even a wash its still quite a gain because the elite pool is growing but it could be there’s a increase in breadth and a loss of height to be considered, but I suspect the diminishing odds of of super high IQs in the long run benefit more from larger pools than more concentrated input.

    Read More
    • Replies: @JayMan

    True but wouldn’t proles contribute at least as many high IQ university students as the elites?
    { Say elites produce 100% high IQ students and all go to university, and proles produce 1 out of 100 of the prole population with a plus 130 IQ and they all go to university, and prole pop is is 100x the elite population of over 130 IQ} I chose >130 IQ because i think that’s the 1%, adjust if im off.
     
    Let's figure it out.

    A simple model for estimating this is to cut the normal distribution. By this definition, "prole" = IQ < 115, "elite" = IQ 115+

    (This is of course not proper, but it's close enough for this purpose).

    "Proles" are 84% of the White population while "elites" are 16%.

    Using the formula for a truncated normal distribution, the mean IQ of the "prole" side is 95.7, while the mean of the "elite" side is 123.

    For the next generation (assuming there's no change in the relative proportions of each), allowing for regression (assuming an additive heritability of IQ of 0.6), the mean IQ of the prole side will be 97.4 and the mean IQ of the elite side will be 114. Each is still 84% and 16% of the total population, respectively.

    The fraction of those IQ 130 coming from the "prole" side will be 1.5% of all proles. The fraction of those coming from the elites will be 14% of all elites.

    So:

    "Elite" share of 130+ = 64%
    "Prole" share of 130+ = 36%

    Two thirds of the high IQ children will originate from the elite class under this model.

  46. Ok, about supposed nazi experiment, is very very likely to be a BS. ;)

    But the rest is right, is not??

    Read More
  47. @JayMan

    The outcome that C = 0 approaches being a reductio ad absurdum.

    We won’t know that the common environmental variance has no effect for major life outcomes until you explain away the reasons the claim seems patently ridiculous.
     

    Look, measure after measure (see my above comment) finds that C = 0. This is an empirical matter. And the case is closed.

    And if shared-environment effects IQ across birth cohorts (as by nutrition in advanced countries), what's the plausibility that there will be no effect within cohorts?
     
    You know, this is an interesting point. If the shared environment has no effect within cohorts (and there's a whole lot of variation between families), then that greatly narrows down the type of environmental effects that could lead to observed differences between cohorts.

    if the gene/common environment interaction differs from the gene/unique environment interaction.
     
    Don't pin your hopes on interactions. It just don't fly.

    Look, measure after measure (see my above comment) finds that C = 0. This is an empirical matter. And the case is closed.

    You didn’t express this degree of certainty when responding to Aaron Gross: “Except that for the shared environment, the fact of the matter is we have reason to believe that zero means zero. See: Apples, Oranges, and Lesbians: The Nurture Assumption Just Will Not Die.”

    I’ll read your piece before commenting on interactions; here I only seek clarification as to which position expresses your real degree of confidence. I doubt the degree of confidence you expressed in reply to me can be justified, when an informed and objective commenter like Ron Unz has concluded that there must be some undiscovered error behind the c = 0 conclusion. [Why isn't c = 0 for height - to interject a question of my own.]

    On the other hand, if the heritability studies only “give us reason to believe,” other evidence might give us greater reason to believe otherwise. Speaking now only hypothetically.

    Pointing out that the issue is “empirical” is … I don’t know .. a bit demagogic. Of course it’s empirical. What else might it be? Logical? Metaphysical? But heritability studies aren’t the only relevant empirical evidence, good scientists don’t ignore evidence that hasn’t been scientifically verified.

    Read More
    • Replies: @JayMan

    You didn’t express this degree of certainty when responding to Aaron Gross: “Except that for the shared environment, the fact of the matter is we have reason to believe that zero means zero. See: Apples, Oranges, and Lesbians: The Nurture Assumption Just Will Not Die.”

    I’ll read your piece before commenting on interactions; here I only seek clarification as to which position expresses your real degree of confidence. I doubt the degree of confidence you expressed in reply to me can be justified, when an informed and objective commenter like Ron Unz has concluded that there must be some undiscovered error behind the c = 0 conclusion. [Why isn't c = 0 for height - to interject a question of my own.
     

    If you haven't read my relevant pieces on the matter, why are you commenting now? Hint, hint. Last warning.

    C = 0 for height, by the way. Don't confuse the shared environment with secular changes.

  48. @JayMan

    But it’s not just new effects that can cause a big change between cohorts. For instance, suppose hypothetically that playing a certain obscure work by Mozart to infants greatly increases their IQs. If only a minuscule number of parents currently play that music, then the shared environmental effect will be negligible. But if everyone started playing that music, then there might be a huge difference between cohorts.

    This goes back to a statistical or logical fallacy that lots of people make, including famous people like Judith Rich Harris. All variances – those explained by genes, shared environment, etc. – are averages. It’s a fallacy to say, “The shared environment effect is negligible, therefore none of the shared environments today have a strong effect on the trait.” But that’s exactly what some people say or imply.
     

    Except that for the shared environment, the fact of the matter is we have reason to believe that zero means zero. See: Apples, Oranges, and Lesbians: The Nurture Assumption Just Will Not Die

    Finally, your statement seems wrong for a much more general reason. While for a given cohort the mean is fixed, between cohorts the mean is changing. You have no way of knowing a priori what effects a change in the mean will have.
     
    We know it means nothing for behavioral genetic studies.

    I read your article you linked to, and I don’t see what it has to do with my point. It says that if the additive effects are negligible, in practice we can expect that the interactive effects will be negligible as well (though they don’t have to be), because it would be surprising for the mechanism to exactly balance out additively.

    I agree, but that doesn’t apply to my point. If there’s a (currently) rare treatment, then because it’s rare, we would expect the overall shared-environment effect to be negligible, even if the treatment had a strong effect.

    Re your reply that a change in means over time “means nothing for behavioral genetic studies”: Well, it’s a type of environmental effect that’s totally invisible to the kind of studies your talking about. That says only that the studies themselves are limited, nothing wrong with that. But it also says that many people (including you, but you’re in good company) interpret the findings of the studies wrongly, by drawing conclusions that go far beyond what the data imply. By the way, there are plenty of people who have pointed this out, I’m not claiming any originality here.

    Read More
    • Replies: @JayMan

    I read your article you linked to, and I don’t see what it has to do with my point. It says that if the additive effects are negligible, in practice we can expect that the interactive effects will be negligible as well (though they don’t have to be), because it would be surprising for the mechanism to exactly balance out additively.

    I agree, but that doesn’t apply to my point. If there’s a (currently) rare treatment, then because it’s rare, we would expect the overall shared-environment effect to be negligible, even if the treatment had a strong effect.
     

    Holding out hope a little too much, aren't we?

    OK let's say that this is real. The moral? The vast majority of parents don't need to be concerned with it, because it's so rare it won't matter to most.


    Re your reply that a change in means over time “means nothing for behavioral genetic studies”: Well, it’s a type of environmental effect that’s totally invisible to the kind of studies your talking about.
     
    No, not if they include several generations and/or are extended twin studies.

    Why do people insist on grasping at straws? Go get cigarettes and drinks, this one has flatlined.

  49. JayMan says: • Website
    @Aaron Gross
    I read your article you linked to, and I don't see what it has to do with my point. It says that if the additive effects are negligible, in practice we can expect that the interactive effects will be negligible as well (though they don't have to be), because it would be surprising for the mechanism to exactly balance out additively.

    I agree, but that doesn't apply to my point. If there's a (currently) rare treatment, then because it's rare, we would expect the overall shared-environment effect to be negligible, even if the treatment had a strong effect.

    Re your reply that a change in means over time "means nothing for behavioral genetic studies": Well, it's a type of environmental effect that's totally invisible to the kind of studies your talking about. That says only that the studies themselves are limited, nothing wrong with that. But it also says that many people (including you, but you're in good company) interpret the findings of the studies wrongly, by drawing conclusions that go far beyond what the data imply. By the way, there are plenty of people who have pointed this out, I'm not claiming any originality here.

    I read your article you linked to, and I don’t see what it has to do with my point. It says that if the additive effects are negligible, in practice we can expect that the interactive effects will be negligible as well (though they don’t have to be), because it would be surprising for the mechanism to exactly balance out additively.

    I agree, but that doesn’t apply to my point. If there’s a (currently) rare treatment, then because it’s rare, we would expect the overall shared-environment effect to be negligible, even if the treatment had a strong effect.

    Holding out hope a little too much, aren’t we?

    OK let’s say that this is real. The moral? The vast majority of parents don’t need to be concerned with it, because it’s so rare it won’t matter to most.

    Re your reply that a change in means over time “means nothing for behavioral genetic studies”: Well, it’s a type of environmental effect that’s totally invisible to the kind of studies your talking about.

    No, not if they include several generations and/or are extended twin studies.

    Why do people insist on grasping at straws? Go get cigarettes and drinks, this one has flatlined.

    Read More
  50. JayMan says: • Website
    @Stephen R. Diamond

    Look, measure after measure (see my above comment) finds that C = 0. This is an empirical matter. And the case is closed.
     
    You didn't express this degree of certainty when responding to Aaron Gross: "Except that for the shared environment, the fact of the matter is we have reason to believe that zero means zero. See: Apples, Oranges, and Lesbians: The Nurture Assumption Just Will Not Die."

    I'll read your piece before commenting on interactions; here I only seek clarification as to which position expresses your real degree of confidence. I doubt the degree of confidence you expressed in reply to me can be justified, when an informed and objective commenter like Ron Unz has concluded that there must be some undiscovered error behind the c = 0 conclusion. [Why isn't c = 0 for height - to interject a question of my own.]

    On the other hand, if the heritability studies only "give us reason to believe," other evidence might give us greater reason to believe otherwise. Speaking now only hypothetically.

    Pointing out that the issue is "empirical" is ... I don't know .. a bit demagogic. Of course it's empirical. What else might it be? Logical? Metaphysical? But heritability studies aren't the only relevant empirical evidence, good scientists don't ignore evidence that hasn't been scientifically verified.

    You didn’t express this degree of certainty when responding to Aaron Gross: “Except that for the shared environment, the fact of the matter is we have reason to believe that zero means zero. See: Apples, Oranges, and Lesbians: The Nurture Assumption Just Will Not Die.”

    I’ll read your piece before commenting on interactions; here I only seek clarification as to which position expresses your real degree of confidence. I doubt the degree of confidence you expressed in reply to me can be justified, when an informed and objective commenter like Ron Unz has concluded that there must be some undiscovered error behind the c = 0 conclusion. [Why isn’t c = 0 for height – to interject a question of my own.

    If you haven’t read my relevant pieces on the matter, why are you commenting now? Hint, hint. Last warning.

    C = 0 for height, by the way. Don’t confuse the shared environment with secular changes.

    Read More
    • Replies: @szopen
    Well, I re-read "All human behaviour is heritable", and C!=0 for:

    #. Asocial behaviour (.09 for adults)
    #. Conservatism (yes in females above 20 years old)
    #. RWA (0-0.16 in adults)
    #. Religiousness (0.2-0.4)
    #. Psychological interests (0.08-0.12)

    I'd say that this still opens a possibility that for some psychological traits C is non zero.

    And I still don't get twin studies :( (why you can estimate C from difference between monozygotic and dizygotic twins. I would understand that if you would have monozygotic and dizygotic twins sharing the same environment - i.e. from the same family, but I do not get how the formulas can work if they do not share the environment, even if averaged over large number of different twins and environments :( )
  51. szopen says:
    @JayMan

    You didn’t express this degree of certainty when responding to Aaron Gross: “Except that for the shared environment, the fact of the matter is we have reason to believe that zero means zero. See: Apples, Oranges, and Lesbians: The Nurture Assumption Just Will Not Die.”

    I’ll read your piece before commenting on interactions; here I only seek clarification as to which position expresses your real degree of confidence. I doubt the degree of confidence you expressed in reply to me can be justified, when an informed and objective commenter like Ron Unz has concluded that there must be some undiscovered error behind the c = 0 conclusion. [Why isn't c = 0 for height - to interject a question of my own.
     

    If you haven't read my relevant pieces on the matter, why are you commenting now? Hint, hint. Last warning.

    C = 0 for height, by the way. Don't confuse the shared environment with secular changes.

    Well, I re-read “All human behaviour is heritable”, and C!=0 for:

    #. Asocial behaviour (.09 for adults)
    #. Conservatism (yes in females above 20 years old)
    #. RWA (0-0.16 in adults)
    #. Religiousness (0.2-0.4)
    #. Psychological interests (0.08-0.12)

    I’d say that this still opens a possibility that for some psychological traits C is non zero.

    And I still don’t get twin studies :( (why you can estimate C from difference between monozygotic and dizygotic twins. I would understand that if you would have monozygotic and dizygotic twins sharing the same environment – i.e. from the same family, but I do not get how the formulas can work if they do not share the environment, even if averaged over large number of different twins and environments :( )

    Read More
    • Replies: @szopen
    Damn, I waited too long with edit. Sorry Jayman for the additional post.

    With twin studies, for example I wonder what would be the impact of more similarity of MZ than DZ twins. MZ twins will have similar interests and will create more similar environments than DZ twins.
    , @JayMan

    Well, I re-read “All human behaviour is heritable”, and C!=0 for:
     
    That was a summary of behavioral genetic literature way back when Bouchard reviewed it. Newer, larger studies confirm that C=0 for all those traits:

    The Son Becomes The Father

  52. szopen says:
    @szopen
    Well, I re-read "All human behaviour is heritable", and C!=0 for:

    #. Asocial behaviour (.09 for adults)
    #. Conservatism (yes in females above 20 years old)
    #. RWA (0-0.16 in adults)
    #. Religiousness (0.2-0.4)
    #. Psychological interests (0.08-0.12)

    I'd say that this still opens a possibility that for some psychological traits C is non zero.

    And I still don't get twin studies :( (why you can estimate C from difference between monozygotic and dizygotic twins. I would understand that if you would have monozygotic and dizygotic twins sharing the same environment - i.e. from the same family, but I do not get how the formulas can work if they do not share the environment, even if averaged over large number of different twins and environments :( )

    Damn, I waited too long with edit. Sorry Jayman for the additional post.

    With twin studies, for example I wonder what would be the impact of more similarity of MZ than DZ twins. MZ twins will have similar interests and will create more similar environments than DZ twins.

    Read More
    • Replies: @szopen
    Jayman, please remove my previous post. If I understand correctly, the problem I had with twins making environment more similar would result in inflation of C estimation, right?
  53. szopen says:
    @szopen
    Damn, I waited too long with edit. Sorry Jayman for the additional post.

    With twin studies, for example I wonder what would be the impact of more similarity of MZ than DZ twins. MZ twins will have similar interests and will create more similar environments than DZ twins.

    Jayman, please remove my previous post. If I understand correctly, the problem I had with twins making environment more similar would result in inflation of C estimation, right?

    Read More
  54. @Langley
    It should be "towards the mean."

    I want to second this. The reason to prefer this wording is that it doesn’t suggest that the regression is always complete or will be at some point in later generations. “regression to the mean” makes these misunderstandings more common I think.

    Read More
  55. First you need define specifically what is “mean”. Where begin where finish the mean.
    In my opinion and specially for this iq-context, mean is unlikely to be a single number but a spectrum where majority of people fit. Just look for bell curve that illustrates this post.

    Read More
  56. JayMan says: • Website
    @szopen
    Well, I re-read "All human behaviour is heritable", and C!=0 for:

    #. Asocial behaviour (.09 for adults)
    #. Conservatism (yes in females above 20 years old)
    #. RWA (0-0.16 in adults)
    #. Religiousness (0.2-0.4)
    #. Psychological interests (0.08-0.12)

    I'd say that this still opens a possibility that for some psychological traits C is non zero.

    And I still don't get twin studies :( (why you can estimate C from difference between monozygotic and dizygotic twins. I would understand that if you would have monozygotic and dizygotic twins sharing the same environment - i.e. from the same family, but I do not get how the formulas can work if they do not share the environment, even if averaged over large number of different twins and environments :( )

    Well, I re-read “All human behaviour is heritable”, and C!=0 for:

    That was a summary of behavioral genetic literature way back when Bouchard reviewed it. Newer, larger studies confirm that C=0 for all those traits:

    The Son Becomes The Father

    Read More
  57. JayMan says: • Website
    @Anonymous
    True but wouldn't proles contribute at least as many high IQ university students as the elites?
    { Say elites produce 100% high IQ students and all go to university, and proles produce 1 out of 100 of the prole population with a plus 130 IQ and they all go to university, and prole pop is is 100x the elite population of over 130 IQ} I chose >130 IQ because i think that's the 1%, adjust if im off.
    So now we have an equal number of stabilized high IQ elite children and regression prone prole High IQ children at university together. Even without any further mating proles have doubled the number of the nations high IQ quotient. Further assuming the elites can and want to still mate only with their class, and the prole university kids all marry out of the prole elites group to average prole mates. The proles will continue to add as many cognitive elites every year as the elites do.
    BUT what I think will/ does actually happen is elites have a much harder time identifying each other at university and very little interest in perpetuating a class division and so in reality they are mating as often with high IQ proles as high IQ elites.
    Now if you agree with me so far the question I am not informed enough to answer is how much regression are the elites picking up and how much are the proles losing in these mixed mating's what is the net gain or loss in the next generation as measure against a pure bred model.
    I would think if it is even a wash its still quite a gain because the elite pool is growing but it could be there's a increase in breadth and a loss of height to be considered, but I suspect the diminishing odds of of super high IQs in the long run benefit more from larger pools than more concentrated input.

    True but wouldn’t proles contribute at least as many high IQ university students as the elites?
    { Say elites produce 100% high IQ students and all go to university, and proles produce 1 out of 100 of the prole population with a plus 130 IQ and they all go to university, and prole pop is is 100x the elite population of over 130 IQ} I chose >130 IQ because i think that’s the 1%, adjust if im off.

    Let’s figure it out.

    A simple model for estimating this is to cut the normal distribution. By this definition, “prole” = IQ < 115, "elite" = IQ 115+

    (This is of course not proper, but it's close enough for this purpose).

    "Proles" are 84% of the White population while "elites" are 16%.

    Using the formula for a truncated normal distribution, the mean IQ of the “prole” side is 95.7, while the mean of the “elite” side is 123.

    For the next generation (assuming there’s no change in the relative proportions of each), allowing for regression (assuming an additive heritability of IQ of 0.6), the mean IQ of the prole side will be 97.4 and the mean IQ of the elite side will be 114. Each is still 84% and 16% of the total population, respectively.

    The fraction of those IQ 130 coming from the “prole” side will be 1.5% of all proles. The fraction of those coming from the elites will be 14% of all elites.

    So:

    “Elite” share of 130+ = 64%
    “Prole” share of 130+ = 36%

    Two thirds of the high IQ children will originate from the elite class under this model.

    Read More
  58. JohnM says:

    This whole discussion is shot through with misunderstanding of H2. The concept has no applicability to individuals. A group can have a mean weight, while the individuals of it have a weight. A group can have a mean H2 for some trait, but no individual has an H2.

    So if H2 for some desirable trait T is .8 it is no more likely that a individual will inherit T than if the H2 is .3.

    Read More
    • Replies: @JayMan

    So if H2 for some desirable trait T is .8 it is no more likely that a individual will inherit T than if the H2 is .3.
     
    For the individuals, the breeder's equation only tells you probabilities for expected children. It can't do much more than that thanks to the statistics of small numbers issue, among other things.
  59. viking says: • Website

    thanks ive been wondering about that. even without accounting for proles probably having more children one third is not a trifle contribution ide imagine they also are keeping the blue blood from turning green.

    Read More
  60. JayMan says: • Website
    @JohnM
    This whole discussion is shot through with misunderstanding of H2. The concept has no applicability to individuals. A group can have a mean weight, while the individuals of it have a weight. A group can have a mean H2 for some trait, but no individual has an H2.

    So if H2 for some desirable trait T is .8 it is no more likely that a individual will inherit T than if the H2 is .3.

    So if H2 for some desirable trait T is .8 it is no more likely that a individual will inherit T than if the H2 is .3.

    For the individuals, the breeder’s equation only tells you probabilities for expected children. It can’t do much more than that thanks to the statistics of small numbers issue, among other things.

    Read More
  61. Nicely done, JayMan. My explanation here.

    And yes, please do devote a post to tossing & goring overblown claims for epigenetics.

    Read More
  62. Sean Last says:

    I don’t see how any of the assumptions of this model hold up.

    First, there is the idea that shared environment explains roughly nothing in terms of IQ variance. Many researchers who make this claim refer back to McGue’s 1993 review. However, Kaplan 2012 showed that this review was deeply flawed, especially with respect to its calculation of C. Specifically, Kaplan notes that McGue’s data most straightforwardly implied a C of -.06, an impossibility. Rather than finding this data to be problematic, McGue simply subtracted .06 from E to arrive at 0.00 for C. Kaplan was also able to show that the problem lied with elderly samples: if you restrict McGue’s sample to only include twins below the age of 60 you get a mean C value of .17. This is consistent with more contemporary studies, such as Hartworth et al. 2011 and Kendler et al. 2015, both of which showed significant effects for shared environment. Hartworth et al. is especially note worth because its sample size was dramatically larger than McGue’s was. Over all, contemporary intelligence research does not support the idea that C is zero for adults. (And, of course, it never supported this idea for children. This is especially note worth since regression to the mean studies often involve children or adolescents.)

    Secondly, the assumption that E is random is counter intuitive and, so far as I know, not backed up by any significant evidence. There is no obvious reason to suppose that parents are totally unable to transmit non-shared environmental abnormalities that they experience to their children.

    Lastly, D is certainly not random. If your parents posses some genetic feature which has a non additive impact on a trait you will be more likely than the general population to also posses that genetic feature. The fact that it isn’t assured doesn’t change the fact that the probability will be greater than average.

    Read More
    • Replies: @JayMan

    However, Kaplan 2012 showed that this review was deeply flawed
     
    It's Jonathan Kaplan, that's your problem. He's hardly the most objective voice (by the way, if you read this comment, and claim that was ad hominem, you have failed).

    Specifically, Kaplan notes that McGue’s data most straightforwardly implied a C of -.06, an impossibility.
     
    What could push the shared environment term to the negative in a standard twin study? Hmmm...

    if you restrict McGue’s sample to only include twins below the age of 60 you get a mean C value of .17. This is consistent with more contemporary studies, such as Hartworth et al. 2011 and Kendler et al. 2015
     
    Why don't we try this?

    More Behavioral Genetic Facts

    As for the Kendler study, Swedish adoption during that time wasn't exactly random. Hence, seeing a tiny "effect" isn't unexpected.

    That said, see this:

    https://twitter.com/KirkegaardEmil/status/662219828887973889

    Even if the C term for IQ in adults was nonzero (which it's not), if the effect of E term is clearly not "real", then neither can the C term.


    Secondly, the assumption that E is random is counter intuitive and, so far as I know, not backed up by any significant evidence.
     
    See above.

    Lastly, D is certainly not random. If your parents posses some genetic feature which has a non additive impact on a trait you will be more likely than the general population to also posses that genetic feature.
     
    Then that would make it additive, right (i.e., A not D)? Think of non-additive heritability like Tetris pieces. The exact effect of each piece depends on the context, but most pieces have a net positive or net negative impact.

    Note to you and other commenters: there are over 200 posts of mine here, and they tend to be arranged and linked to in a way that should make them easy to find (if not easy to find, please let me know). Before claiming in a comment that some claim of mine is "not backed up by any significant evidence," try reading around first.

  63. JayMan says: • Website
    @Sean Last
    I don't see how any of the assumptions of this model hold up.

    First, there is the idea that shared environment explains roughly nothing in terms of IQ variance. Many researchers who make this claim refer back to McGue's 1993 review. However, Kaplan 2012 showed that this review was deeply flawed, especially with respect to its calculation of C. Specifically, Kaplan notes that McGue's data most straightforwardly implied a C of -.06, an impossibility. Rather than finding this data to be problematic, McGue simply subtracted .06 from E to arrive at 0.00 for C. Kaplan was also able to show that the problem lied with elderly samples: if you restrict McGue's sample to only include twins below the age of 60 you get a mean C value of .17. This is consistent with more contemporary studies, such as Hartworth et al. 2011 and Kendler et al. 2015, both of which showed significant effects for shared environment. Hartworth et al. is especially note worth because its sample size was dramatically larger than McGue's was. Over all, contemporary intelligence research does not support the idea that C is zero for adults. (And, of course, it never supported this idea for children. This is especially note worth since regression to the mean studies often involve children or adolescents.)

    Secondly, the assumption that E is random is counter intuitive and, so far as I know, not backed up by any significant evidence. There is no obvious reason to suppose that parents are totally unable to transmit non-shared environmental abnormalities that they experience to their children.

    Lastly, D is certainly not random. If your parents posses some genetic feature which has a non additive impact on a trait you will be more likely than the general population to also posses that genetic feature. The fact that it isn't assured doesn't change the fact that the probability will be greater than average.

    However, Kaplan 2012 showed that this review was deeply flawed

    It’s Jonathan Kaplan, that’s your problem. He’s hardly the most objective voice (by the way, if you read this comment, and claim that was ad hominem, you have failed).

    Specifically, Kaplan notes that McGue’s data most straightforwardly implied a C of -.06, an impossibility.

    What could push the shared environment term to the negative in a standard twin study? Hmmm…

    if you restrict McGue’s sample to only include twins below the age of 60 you get a mean C value of .17. This is consistent with more contemporary studies, such as Hartworth et al. 2011 and Kendler et al. 2015

    Why don’t we try this?

    More Behavioral Genetic Facts

    As for the Kendler study, Swedish adoption during that time wasn’t exactly random. Hence, seeing a tiny “effect” isn’t unexpected.

    That said, see this:

    Even if the C term for IQ in adults was nonzero (which it’s not), if the effect of E term is clearly not “real”, then neither can the C term.

    Secondly, the assumption that E is random is counter intuitive and, so far as I know, not backed up by any significant evidence.

    See above.

    Lastly, D is certainly not random. If your parents posses some genetic feature which has a non additive impact on a trait you will be more likely than the general population to also posses that genetic feature.

    Then that would make it additive, right (i.e., A not D)? Think of non-additive heritability like Tetris pieces. The exact effect of each piece depends on the context, but most pieces have a net positive or net negative impact.

    Note to you and other commenters: there are over 200 posts of mine here, and they tend to be arranged and linked to in a way that should make them easy to find (if not easy to find, please let me know). Before claiming in a comment that some claim of mine is “not backed up by any significant evidence,” try reading around first.

    Read More
  64. I don’t think you really give a fair treatment of regression to the mean. A good theoretical model of regression to the mean is that given continuous unimodal symmetric independent random variables A, X, X’ with X, X’ identically distributed and m = A + X > E[A + X] then E[A + X'| A+ X = m] if m < E[A+X]) . In other words if we have some underlying ability (true IQ etc.. etc..) A and some noisy measurement of A then the result of that measurement is an overestimate of how extreme A is.

    If we think of genetic outcomes as the result of some heritable component A and non-heritable component X (the effect of enviornment and lucky combinations of genes that aren't practically heritable) then this tells us that if mates are selected to share the same heritable component A then we should expect their offspring to be less smart. This DOES continue indefinitely in the following sense. If your ancestors IQs were m1, m2 … mk and the average m of m1…mk is greater than E[A + X] then your expected IQ conditional on your ancestors having IQs m1…mk is less than m. In other words part of the reason your ancestors are smarter than average is probably luck so you probably won't be as smart.

    This isn't incompatible with any kind of selection pressure. Just because each generation is likely to be more average than their ancestors doesn't mean they become arbitrarily average. The size of the regression to the mean effect reduces as you condition on more trials.

    In other words if your parents are geniuses you have good reason to think a great deal of that is probably luck and you will be much less smart than they are. If both your parents and grandparents are geniuses then the family intelligence is probably partly luck so you will be somewhat less smart. If the last 10 generations of your family have an average IQ of 121 that is probably only slightly due to luck so you should expect your IQ to be only slightly less than 121.

    Of course using this model in genetic can be a bit tricky since deciding what A is to measure and what does and doesn't go into the heritable component isn't obvious (nor a perfect model).

    Read More
    • Replies: @JayMan

    This DOES continue indefinitely in the following sense. If your ancestors IQs were m1, m2 … mk and the average m of m1…mk is greater than E[A + X] then your expected IQ conditional on your ancestors having IQs m1…mk is less than m. In other words part of the reason your ancestors are smarter than average is probably luck so you probably won't be as smart.
     
    That depends on the family, which was my point. Some families are much smarter than average than others. Assortative mating can brings such families together, stalling regression.

    This isn't incompatible with any kind of selection pressure. Just because each generation is likely to be more average than their ancestors doesn't mean they become arbitrarily average. The size of the regression to the mean effect reduces as you condition on more trials.
     
    You're confusion regression considered for individuals with regression considered for populations. When considering a population, after the first regression in the second generation, you've changed the average. That is what stalls regression to the mean in subsequent generations.

    If the last 10 generations of your family have an average IQ of 121 that is probably only slightly due to luck so you should expect your IQ to be only slightly less than 121.
     
    Exactly.
  65. JayMan says: • Website
    @Peter Gerdes
    I don't think you really give a fair treatment of regression to the mean. A good theoretical model of regression to the mean is that given continuous unimodal symmetric independent random variables A, X, X' with X, X' identically distributed and m = A + X > E[A + X] then E[A + X'| A+ X = m] if m < E[A+X]) . In other words if we have some underlying ability (true IQ etc.. etc..) A and some noisy measurement of A then the result of that measurement is an overestimate of how extreme A is.

    If we think of genetic outcomes as the result of some heritable component A and non-heritable component X (the effect of enviornment and lucky combinations of genes that aren't practically heritable) then this tells us that if mates are selected to share the same heritable component A then we should expect their offspring to be less smart. This DOES continue indefinitely in the following sense. If your ancestors IQs were m1, m2 ... mk and the average m of m1...mk is greater than E[A + X] then your expected IQ conditional on your ancestors having IQs m1...mk is less than m. In other words part of the reason your ancestors are smarter than average is probably luck so you probably won't be as smart.

    This isn't incompatible with any kind of selection pressure. Just because each generation is likely to be more average than their ancestors doesn't mean they become arbitrarily average. The size of the regression to the mean effect reduces as you condition on more trials.

    In other words if your parents are geniuses you have good reason to think a great deal of that is probably luck and you will be much less smart than they are. If both your parents and grandparents are geniuses then the family intelligence is probably partly luck so you will be somewhat less smart. If the last 10 generations of your family have an average IQ of 121 that is probably only slightly due to luck so you should expect your IQ to be only slightly less than 121.

    Of course using this model in genetic can be a bit tricky since deciding what A is to measure and what does and doesn't go into the heritable component isn't obvious (nor a perfect model).

    This DOES continue indefinitely in the following sense. If your ancestors IQs were m1, m2 … mk and the average m of m1…mk is greater than E[A + X] then your expected IQ conditional on your ancestors having IQs m1…mk is less than m. In other words part of the reason your ancestors are smarter than average is probably luck so you probably won’t be as smart.

    That depends on the family, which was my point. Some families are much smarter than average than others. Assortative mating can brings such families together, stalling regression.

    This isn’t incompatible with any kind of selection pressure. Just because each generation is likely to be more average than their ancestors doesn’t mean they become arbitrarily average. The size of the regression to the mean effect reduces as you condition on more trials.

    You’re confusion regression considered for individuals with regression considered for populations. When considering a population, after the first regression in the second generation, you’ve changed the average. That is what stalls regression to the mean in subsequent generations.

    If the last 10 generations of your family have an average IQ of 121 that is probably only slightly due to luck so you should expect your IQ to be only slightly less than 121.

    Exactly.

    Read More
  66. MEH 0910 says:

    OT: Bringing Up Genius

    Before Laszlo Polgár conceived his children, before he even met his wife, he knew he was going to raise geniuses. He’d started to write a book about it. He saw it moves ahead.

    By their first meeting, a dinner and walk around Budapest in 1965, Laszlo told Klara, his future bride, how his kids’ education would go. He had studied the lives of geniuses and divined a pattern: an adult singularly focused on the child’s success. He’d raise the kids outside school, with intense devotion to a subject, though he wasn’t sure what. “Every healthy child,” as he liked to say, “is a potential genius.” Genetics and talent would be no obstacle. And he’d do it with great love.

    H/T: Arts & Letters Daily

    Interesting how they are a Hungarian Jewish family.

    https://en.wikipedia.org/wiki/Susan_Polgar#Personal_life

    Read More
    • Replies: @reiner Tor
    There are at least four caveats here.

    1) There was self-selection in the case of László Polgár, he needed to be highly intelligent to even conceive of the idea, and to try to raise his children to become great chess players (as opposed to, say, great swimmers or whatever)
    2) There was self-selection in the case of the wife, Klára. Many women would have opposed or obstructed his plan.
    3) There was self-selection on the level of the story: we only here about the successful one. There might be a few other families who also planned to raise their kids to be geniuses, but didn't succeed.
    4) The three Polgár sisters' chess skills are nowhere near each other. Judit Polgár (the youngest of the three) was the strongest female player of all time, Zsuzsanna (Susan) Polgár (the oldest of the three) is a Grandmaster, whereas Zsófia (Sofia) Polgár (the middle sister) is only a Woman Grandmaster. The point is not to belittle the latter title (I'd be proud of my daughter if she achieved that), but simply that they are not nearly all on the same level, in spite of having received the same education and upbringing.
  67. Great post. Yes, you could have added the fact it’s a sampling effect.

    Read More
  68. @MEH 0910
    OT: Bringing Up Genius

    Before Laszlo Polgár conceived his children, before he even met his wife, he knew he was going to raise geniuses. He’d started to write a book about it. He saw it moves ahead.

    By their first meeting, a dinner and walk around Budapest in 1965, Laszlo told Klara, his future bride, how his kids’ education would go. He had studied the lives of geniuses and divined a pattern: an adult singularly focused on the child’s success. He’d raise the kids outside school, with intense devotion to a subject, though he wasn’t sure what. "Every healthy child," as he liked to say, "is a potential genius." Genetics and talent would be no obstacle. And he’d do it with great love.
     
    H/T: Arts & Letters Daily

    Interesting how they are a Hungarian Jewish family.
    https://en.wikipedia.org/wiki/Susan_Polgar#Personal_life

    There are at least four caveats here.

    1) There was self-selection in the case of László Polgár, he needed to be highly intelligent to even conceive of the idea, and to try to raise his children to become great chess players (as opposed to, say, great swimmers or whatever)
    2) There was self-selection in the case of the wife, Klára. Many women would have opposed or obstructed his plan.
    3) There was self-selection on the level of the story: we only here about the successful one. There might be a few other families who also planned to raise their kids to be geniuses, but didn’t succeed.
    4) The three Polgár sisters’ chess skills are nowhere near each other. Judit Polgár (the youngest of the three) was the strongest female player of all time, Zsuzsanna (Susan) Polgár (the oldest of the three) is a Grandmaster, whereas Zsófia (Sofia) Polgár (the middle sister) is only a Woman Grandmaster. The point is not to belittle the latter title (I’d be proud of my daughter if she achieved that), but simply that they are not nearly all on the same level, in spite of having received the same education and upbringing.

    Read More
  69. Regression to the mean happens mainly when some individuals born comparatively more-evolved than its population. They tend to be the first of a novel genetic combinations.

    Read More
  70. JayMan says: • Website
    @Santoculto
    Regression to the mean happens mainly when some individuals born comparatively more-evolved than its population. They tend to be the first of a novel genetic combinations.

    No, not quite.

    Read More
  71. […] things I’ve heard in the black-white IQ debate. Hey Chanda, there is something called Regression to the Mean (nice post Jayman), which throws your theory out of the […]

    Read More
  72. Luke Lea says: • Website

    Evo and Proud begs to disagree on 3rd generation resetting of mean:

    Regression to the mean is something else. It happens because of genetic change. For instance, a man with above-average IQ will likely marry a woman with above-average IQ. But only part of their above-averageness is genetic. The rest is due to favorable circumstances. Or simply luck. So their children’s IQ will likely be a bit closer to the mean of the overall population. That second generation will in turn marry people with similar IQs. And their children will likewise be closer still to the population mean. Eventually, several generations later, the descendants of that original couple will have a mean IQ that matches the population mean.

    I’d like to see more plain english confirmations of Jayman’s position on this important point. If Jayman is right it would be HUGE. But I am dubious.

    Read More
    • Replies: @JayMan

    That second generation will in turn marry people with similar IQs. And their children will likewise be closer still to the population mean. Eventually, several generations later, the descendants of that original couple will have a mean IQ that matches the population mean.
     
    Frost is wrong here. That second generation will only regress if they choose mates from lower average IQ population. When assortative mating is perfect, there is no regression. Look at Gregory Clark's work.
  73. JayMan says: • Website
    @Luke Lea
    Evo and Proud begs to disagree on 3rd generation resetting of mean:

    Regression to the mean is something else. It happens because of genetic change. For instance, a man with above-average IQ will likely marry a woman with above-average IQ. But only part of their above-averageness is genetic. The rest is due to favorable circumstances. Or simply luck. So their children's IQ will likely be a bit closer to the mean of the overall population. That second generation will in turn marry people with similar IQs. And their children will likewise be closer still to the population mean. Eventually, several generations later, the descendants of that original couple will have a mean IQ that matches the population mean.

    I'd like to see more plain english confirmations of Jayman's position on this important point. If Jayman is right it would be HUGE. But I am dubious.

    That second generation will in turn marry people with similar IQs. And their children will likewise be closer still to the population mean. Eventually, several generations later, the descendants of that original couple will have a mean IQ that matches the population mean.

    Frost is wrong here. That second generation will only regress if they choose mates from lower average IQ population. When assortative mating is perfect, there is no regression. Look at Gregory Clark’s work.

    Read More
    • Replies: @Luke Lea
    Ok, I contacted Peter Frost and also found a link to Greg Cochran and you are correct it seems. That would be enough to explain Aschenazi IQ right there then, wouldn't it, assuming differential birth and survival rates for the merchant/scholar class and perhaps some out migration on the part of the poorest, least successful members of these endogenous communities (schtetls) in Eastern Europe?
  74. Luke Lea says: • Website
    @JayMan

    That second generation will in turn marry people with similar IQs. And their children will likewise be closer still to the population mean. Eventually, several generations later, the descendants of that original couple will have a mean IQ that matches the population mean.
     
    Frost is wrong here. That second generation will only regress if they choose mates from lower average IQ population. When assortative mating is perfect, there is no regression. Look at Gregory Clark's work.

    Ok, I contacted Peter Frost and also found a link to Greg Cochran and you are correct it seems. That would be enough to explain Aschenazi IQ right there then, wouldn’t it, assuming differential birth and survival rates for the merchant/scholar class and perhaps some out migration on the part of the poorest, least successful members of these endogenous communities (schtetls) in Eastern Europe?

    Read More
    • Replies: @JayMan
    Basic application of the breeder's equation, as well as the fact that it's what we see across the world.
  75. JayMan says: • Website
    @Luke Lea
    Ok, I contacted Peter Frost and also found a link to Greg Cochran and you are correct it seems. That would be enough to explain Aschenazi IQ right there then, wouldn't it, assuming differential birth and survival rates for the merchant/scholar class and perhaps some out migration on the part of the poorest, least successful members of these endogenous communities (schtetls) in Eastern Europe?

    Basic application of the breeder’s equation, as well as the fact that it’s what we see across the world.

    Read More
  76. @JayMan

    Hand waving away a whole new area of scientific study? You do realize that they have done DIRECT experiments that prove transgenerational epigenetics right?
     
    Maybe it's time for me to write an epigenetics (shitting on such) post?

    Steven Pinker has this to say on epigenetics:

    Molecular biologists have appropriated the term “gene” to refer to stretches of DNA that code for a protein. Unfortunately, this sense differs from the one used in population genetics, behavioral genetics, and evolutionary theory, namely any information carrier that is transmissible across generations and has sustained effects on the phenotype. This includes any aspect of DNA that can affect gene expression, and is closer to what is meant by “innate” than genes in the molecular biologists’ narrow sense. The confusion between the two leads to innumerable red herrings in discussions of our makeup, such as the banality that the expression of genes (in the sense of protein-coding stretches of DNA) is regulated by signals from the environment. How else could it be? The alternative is that every cell synthesizes every protein all the time! The epigenetics bubble inflated by the science media is based on a similar confusion.

    https://www.edge.org/response-detail/25337

    If you haven’t picked that book up yet, I recommend it JayMan. It’s a great read.

    Read More
  77. J2 says:
    @JayMan

    Something’s gone wrong here. 0.6 • (2 – 1.3333)σ = 0.6 • (0.6667)σ = 0.4σ; by my calculation the second family should have children with mean IQ 126 (= 120 + 0.4*15). Then, 0.6 • (0.6667 – 1.3333)σ = 0.6 • (-0.6667)σ = -0.4σ, 6 points again, but… that makes the figure of mean child IQ 114 correct, which disagrees with the calculation for the middle family.
     
    Yup, you're right. I screwed up my math. I'll fix it.

    Regression to the mean in genetics can be viewed as a direct effect, caused by genes that were suppressed by dominant genes coming to the fore in later generations (in individuals that didn’t inherit the dominant genes that suppressed them), but it can also be viewed as a sampling effect, where dominant genes mask stuff that’s really there and make that stuff hard to sample. It all depends on your perspective.
     
    Among other things (particularly, E). Basically, "luck" is everything other than additive genetics.

    I’ve been wondering about that one-time-only population regression after a selective step. Regression to the mean is a tool for predicting one outcome given a related outcome, and we can straightforwardly predict a child’s IQ (even a distribution for it) from the parents’ IQ. Taking from the example above, we’d predict that the children of 2 130 IQ parents of unknown background would have a normal IQ distribution centered around 118. If the parents were perfect predictors, the children should all have IQ 130
     
    Umm, meiosis? Have we forgotten what sex does?

    One-time-only population regression seems to me to be equivalent to the statement that knowing a child’s four grandparents gives you exactly as much predictive power as knowing their two parents. This is hard to swallow; grandparents should be worse predictors than parents — and in fact in the domain of genetics specifically we can observe that, while every child receives exactly half of each parent’s genome, the contribution from each grandparent varies!
     
    Actually, grandparents (the average of all four, that is) are better predictors than parents, because they tell you about family background. They control for the "luck" that expressed itself in the parents (non-additive genetics, developmental noise, etc.).

    Is there not some inheritance of luck also, that is, the parents of IQ 130 are probably better off than average and give a better environment, so the breeder equation should not only take the genetic inheritance, set here to 0.6, but inverited environment set to something, like 0.2 maybe. If so, the prediction from two parents is better than from four grandparents.

    Read More
    • Replies: @JayMan

    Is there not some inheritance of luck also, that is, the parents of IQ 130 are probably better off than average and give a better environment
     
    Shared environment is taken into account. But as I noted, the effect of shared environment (C in the ADCE system) is zero, so it doesn't matter.
  78. JayMan says: • Website
    @J2
    Is there not some inheritance of luck also, that is, the parents of IQ 130 are probably better off than average and give a better environment, so the breeder equation should not only take the genetic inheritance, set here to 0.6, but inverited environment set to something, like 0.2 maybe. If so, the prediction from two parents is better than from four grandparents.

    Is there not some inheritance of luck also, that is, the parents of IQ 130 are probably better off than average and give a better environment

    Shared environment is taken into account. But as I noted, the effect of shared environment (C in the ADCE system) is zero, so it doesn’t matter.

    Read More
Current Commenter says:

Leave a Reply - Comments are moderated by JayMan


 Remember My InformationWhy?
 Email Replies to my Comment
Submitted comments become the property of The Unz Review and may be republished elsewhere at the sole discretion of the latter
Subscribe to This Comment Thread via RSS Subscribe to All JayMan Comments via RSS